

MI SYSTEM

BU Installation Systems Installation Technical Manual Technical Data MI System

Version 2.1 10.2018

Terms of common cooperation / Legal disclaimer

The product loading capacities published in these Technical Data Sheets are only valid for the mentioned codes or technical data generation methods and the defined application conditions (e.g. ambient temperature load capacity not valid in case of fire, data not valid in support structures when mixed with third party products), assuming sufficient fastener, base material and building structure strength. Additional calculations, checks and releases by the responsible structural engineer might be needed to clarify the capacity of base material and building structure. Suitability of structures combining different products for specific applications needs to be verified by conducting a system design and calculation, using for example Hilti PROFIS software. In addition, it is crucial to fully respect the Instructions for Use and to assure clean, unaltered and undamaged state of all products at any time in order to achieve this loading capacity (e.g. misuse, modification, overload, corrosion). As products but also technical data generation methodologies evolve over time, technical data might change at any time without prior notice. We recommend to use the latest technical data sheets published by Hilti.

In any case the suitability of structures combining different products for specific applications need to be checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for any specific facility. This book only serves as an aid to interpret the suitability of structures combining different products for specific applications without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application. User must take all necessary and reasonable steps to prevent or limit damage. The suitability of structures combining different products for specific applications are only recommendations that need to be confirmed with a professional designer and/or structural engineers to ensure compliance with User`s specific jurisdiction and project requirements.

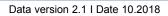
Product	Designation	Item number	Page
MI Syste	m girders (chan	nels) - section prop	erties
30 35 35 35	MI-90 3m MI-90 6m	304798 304799	7 7
20	MI-120 3m MI-120 6m	304800 304801	7 7
MI System conn	ectors		
3/16" (5) 2-15/16" (75) 5-11/16" (145) 3-3/6" (85)	, MIC-BA	2174677	9
3/16" (8) 2-15/16" (75) 5-11/16" (145) 3-3/8" (85)	(5) MIC-BAH	2179532	15
MI-90	MIC-90-UH	2179533	23
MI-120	MIC-120-UH	2179534	31
140 76	MIC-90-L	304805	39
140 76	MIC-90-L-AP	305710	43
1200	MIC-T	304807	47
200 220 1217	MIC-90-LH	2165050	53
to the state of th	MIC-90-E	304809	57
MANUE NAME OF THE PARTY.	MIC-120-E	304810	61

Product	Designation	Item number	Page
MI System conn	ectors		
130 130 197.5	MIC-U-MA	304806	65
MI System base	material connec	tors - concrete	
110 y	MIC-C90-AA	304825	69
9-1/16" (230) 9-1/16" (230) 9/16" (15) MI-90 11/16" (17.88) 9-1/16" (17.89) 9-1/16" (17.89)	MIC-C90-DH	2174661	73
	MIC-C120-DH	2174662	77
3-15/16" (100) 5-7/8" (200) 5-7/8" (8) MI-90 1"x 9/16"(25x14)	MIC-C90-UH	2179535	81
7.7,8° (200) 5.15/16° (150) 1/2° (12.5) 1/4° (6) 1.5/16° (100) 1.5/16° (100) 1.5/16° (100)	BB MIC-CU-MAH	2174664	87
MI System base	material connec	tors - structural ste	el profiles
MI-90 V 300	MIC-S90-AA	304811	91
5-1/2" (140) MI-90 (5-1/8" (175) MI-90 (175) (1754)	MIC-S90-AH	2174665	97
5-1/2" (140) MI-90 9/16" (14) 11/16"x2-1/2" (17x84)	MIC-S90-BH	2174666	105
B NI-90 NI-90 NI-90 NI-90 NI-90 NI-97	MIC-S90-CH	2174667	113
	MIC-S120-AH	2174668	121
11/16"x2-1/2" (17x64)			

Product	Designation	Item number	Page	
MI System base	material connector	rs - structural st	eel profiles	
5-1/2" (140) 1/2" (12)	MIC-S120-BH	2174669	129	
MI-120 9/16" (14) 11/16"x2-1/2" (17x84) 8-11/16"		2174009	129	
5-1/2" (140) MI-120 9/16" (14) 11/16"×2-1/2" (17.6%) 8-11/16	MIC-S120-CH	2174670	137	
9/16" (14) 1/2" (12.5) 3-1/6" (80) 1-1/6" (1756) 3-11/6" (1756) 1-1/6" (1756)	MIC-SA-MAH	2174671	145	
8/16" (14.5) 1/2" (12.5) 1/4" (8) 1/4" (8) 1/4" (8) 1/4" (8) 1/4" (8) 1/4" (8) 1/4" (8) 1/4" (8) 1/4" (8) 1/4" (12.5) 1/4"	MIC-SB-MAH	2174672	155	
8 3-16" (40) 3-16" (60) 3-16" (100) 3-150" (MIC-SC-MAH	2174673	165	
	MI-DGC 90	233860	175	
	MI-DGC 120	233861	179	
MI System brack	kets - concrete			
230 177 178 230	MIC-C90-DH- 500 MIC-C90-DH- 750 MIC-C90-DH-1000 MIC-C90-DH-1500 MIC-C90-DH-2000		183	
230 278 278 330	MIC-C120-DH- 50 MIC-C120-DH- 75 MIC-C120-DH-100 MIC-C120-DH-150 MIC-C120-DH-200	0 2203578 0 2203579 0 2203580	187	
MI System brackets - structural steel profiles				
B Y 155 17x64	MIC-S90-AH- 500 MIC-S90-AH- 750 MIC-S90-AH-1000 MIC-S90-AH-1500 MIC-S90-AH-2000		191	
B 15	MIC-S90-BH- 500 MIC-S90-BH- 750 MIC-S90-BH-1000 MIC-S90-BH-1500 MIC-S90-BH-2000	2203588 2203589	199	

Product	Designation	Item number	Page
MI System bra	ackets - structural stee	el profiles	
155 155 17x84	MIC-S90-CH- 500 MIC-S90-CH- 750 MIC-S90-CH-1000 MIC-S90-CH-1500	2203592 2203593 2203594 2203595 2203596	207
5-1/2" (140) MI-120 11/6" × 1/2" (12) 11/6" × 1/2" (17x64) 8-11/16" × 1/2" (17x64)	MIC-S120-AH- 500 MIC-S120-AH- 750 MIC-S120-AH-1000 MIC-S120-AH-1500 MIC-S120-AH-2000	2203597 2203598 2203599 2203600 2203601	215
8-1/2" (140) MI-120 11/6" (14) 11/6" (14) 11/6" (17) 11/6" (17) 11/6" (17) 11/6" (17) 11/6" (17) 11/6" (17) 11/6" (17)	MIC-S120-BH- 500 MIC-S120-BH- 750 MIC-S120-BH-1000 MIC-S120-BH-1500 MIC-S120-BH-2000	2203602 2203603 2203604 2203605 2203606	223
5-1/2" (140) Mi-120 11/16" (140) 11/16" (17064) 11/16" (17064)	MIC-S120-CH- 500 MIC-S120-CH- 750 MIC-S120-CH-1000 MIC-S120-CH-1500 MIC-S120-CH-2000	2203607 2203608 2203609 2203570 2203571	231

MI-Girders

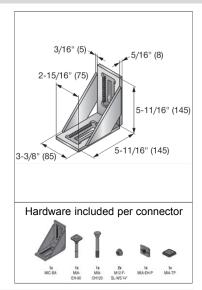

Designation	Item number
MI-90 3m	304798
MI-90 6m	304799
MI-120 3m	304800
MI-120 6m	304801

Technical data			MI-90	MI-120
For girder MI / cross section including torsion			Y	Y
Cross-sectional area	А	[mm²]	1057.4	1456.24
Channel weight		[kg/m]	9.43	12.64
Material				
yield strength	$f_{y,k}$	[N/mm ²]	235.0	235.0
permissible stress*	$\sigma_{\sf rec}$	[N/mm ²]	167.9	167.9
E-module		[N/mm ²]	210000	210000
thrust-module		[N/mm ²]	81000	81000
Surface				
hot dip galvanized		[µm]	75	75
Cross-section values Y-axis				
Axis of gravity	e_y	[mm]	45.0	60.0
moment of inertia	l _y	[cm ⁴]	120.75	280.72
Section modulus	W_y	[cm ³]	26.83	46.79
Radius of gyration	i _y	[cm]	3.38	4.39
Cross-section values Z-axis				
Axis of gravity	e _z	[mm]	45.00	45.00
moment of inertia	l _z	[cm ⁴]	120.75	181.65
Section modulus	W_z	[cm ³]	26.83	40.37
Radius of gyration	i _z	[cm]	3.38	3.53
Data to the torsion				
torsional moment of inertia	lt	[cm ⁴]	164.82	314.97
torsional section modulus	W_t	[cm ³]	38.82	71.69

Material composition: DD11 MOD - EN 10111, S235JR - EN 10025-2

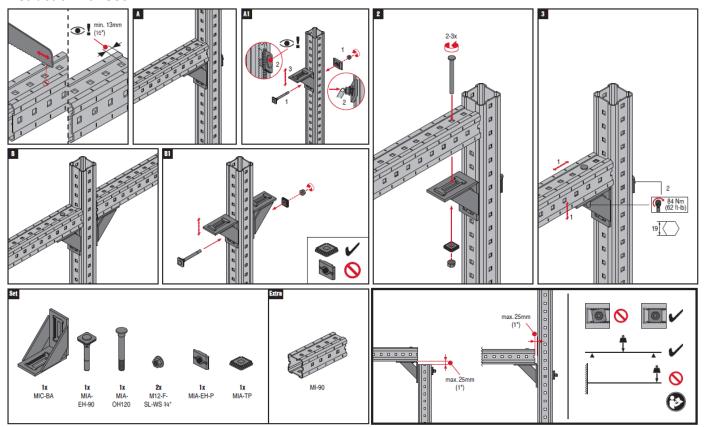
Corrosion protection: Hot-dip galvanized, 75 µm - ASTM A123

Designation	Item number
MIC-BA	2174677

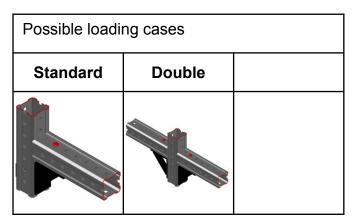

Corrosion protection:				
Material	HDG per	Zinc thickness, min. (μm)		
Connector, Plate	ISO 1461	55		
Toothed Plate	ISO 1461	45		
Backing Plate (Min.)	ISO 1461	45		
Bolt; Nut	ISO 1461	40; 45		

Weight:

2227g incl. components


Description:

Hot dipped galvanized, 90° Hilti MI angle connector, used for connecting two perpendicular MI girders. The baseplate has a serrated slot for improved shear loads and fine adjustment.



Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
$f_y = 220 \frac{\scriptscriptstyle N}{mm^2}$	$f_u = 400 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
$f_y = 640 \frac{N}{mm^2}$	$f_{\rm u} = 800 \frac{\scriptscriptstyle N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
	$f_y = 235 \frac{N}{mm^2}$ $f_y = 235 \frac{N}{mm^2}$ $f_y = 220 \frac{N}{mm^2}$ $f_y = 640 \frac{N}{mm^2}$	$f_{y} = 235 \frac{N}{mm^{2}}$ $f_{u} = 360 \frac{N}{mm^{2}}$ $f_{y} = 235 \frac{N}{mm^{2}}$ $f_{u} = 360 \frac{N}{mm^{2}}$ $f_{u} = 360 \frac{N}{mm^{2}}$ $f_{u} = 400 \frac{N}{mm^{2}}$ $f_{u} = 800 \frac{N}{mm^{2}}$	$f_y = 235 \frac{N}{mm^2} \qquad \qquad f_u = 360 \frac{N}{mm^2} \qquad \qquad E = 210000 \frac{N}{mm^2}$ $f_y = 235 \frac{N}{mm^2} \qquad \qquad f_u = 360 \frac{N}{mm^2} \qquad \qquad E = 210000 \frac{N}{mm^2}$ $f_y = 220 \frac{N}{mm^2} \qquad \qquad f_u = 400 \frac{N}{mm^2} \qquad \qquad E = 210000 \frac{N}{mm^2}$ $f_y = 640 \frac{N}{mm^2} \qquad \qquad f_u = 800 \frac{N}{mm^2} \qquad \qquad E = 210000 \frac{N}{mm^2}$

Instruction For Use:

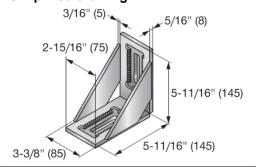
Design criteria used for loading capacity

Methodology:

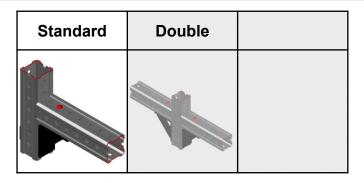
- Finite element analysis
- Analytic calculation

Standards and codes:

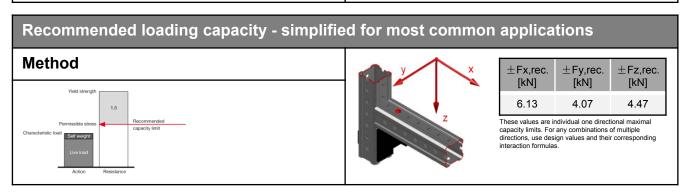
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012
•	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008


Software:

- Ansys 18.2
- Mathcad 15.0
- Microsoft Excel


Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Simplified drawing:

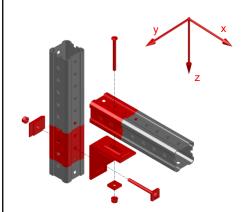


Loading case: Standard		Combinations covered by loading case	
Bill of Material for this loading case	:	Connector used for Connecting MI-90 girder	
For fixation on MI-90 girder 1x MIC-BA 2174677		on either MI-90 or MI-120 girder	
For fixation on MI-120 1x MIC-BA 2174677 1x MIA-EH120 304888 MIA-EH90 remains unused		in a 90-degree angle	

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Standard	Double	

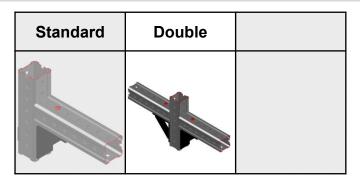

Design loading capacity - 3D

2/2

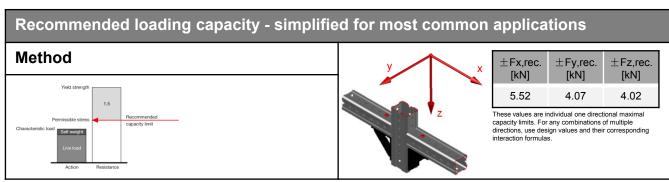
Summary of design loads*

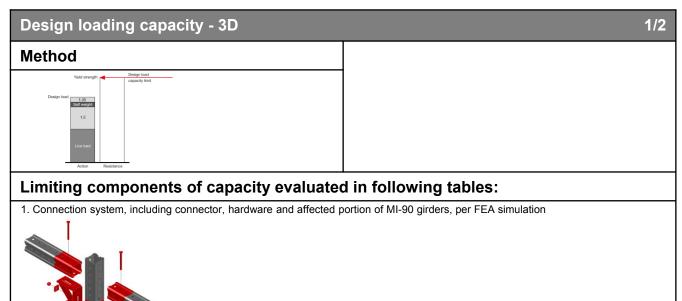
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

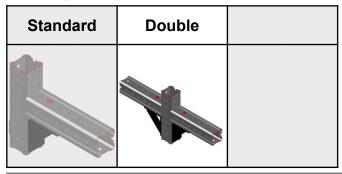
1. Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
9.20	9.70	6.10	6.10	19.60	6.70
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.28	0.28	0.00	0.00	0.00	0.00

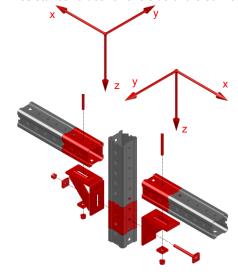

includes cross section resistance of steel plate and contact pressure Interaction:


$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{v.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{v.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$



Validity:

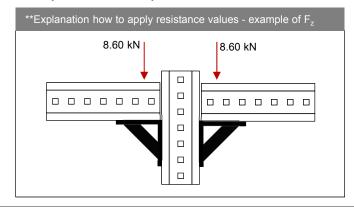
- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/2

Summary of design loads*

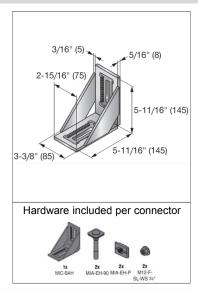
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation Resistance values for one side of the connection system**

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
8.28**	8.60**	6.10**	6.10**	8.60**	6.03**
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.28**	0.28**	0.00	0.00	0.00	0.00

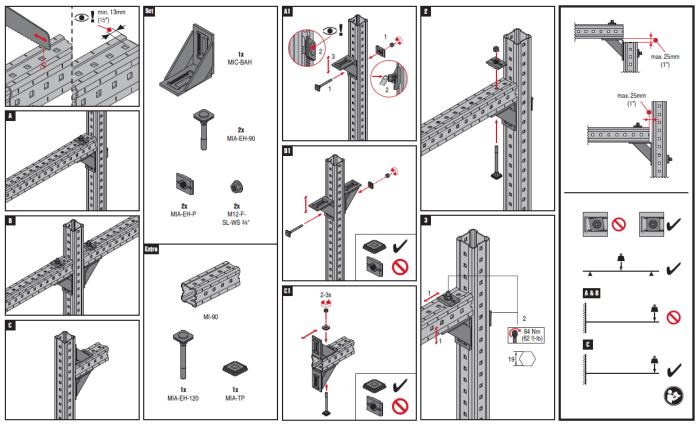
includes cross section resistance of steel plate and contact pressure Interaction:

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

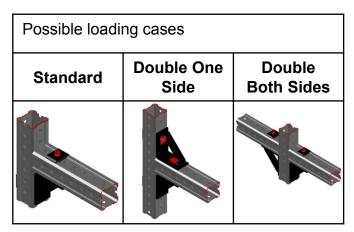

Designation	Item number
MIC-BAH	2179532

Corrosion protection:					
Material	HDG per	Zinc thickness, min. (µm)			
Connector, Plate	ISO 1461	55			
Toothed Plate	ISO 1461	45			
Backing Plate (Min.)	ISO 1461	45			
Bolt; Nut	ISO 1461	40; 45			

Weight: 2227g


Description:

Hot dipped galvanized, 90° Hilti MI angle connector, used for connecting two perpendicular MI girders. The baseplate has a serrated slot for improved shear loads and fine adjustment. Suitable for cantilever applications only when used in Double configuration as defined in the IFU.



Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
$f_y = 220 \frac{\scriptscriptstyle N}{mm^2}$	$f_u = 400 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
$f_y = 640 \frac{\scriptscriptstyle N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
	$f_y = 235 \frac{N}{mm^2}$ $f_y = 235 \frac{N}{mm^2}$ $f_y = 220 \frac{N}{mm^2}$	$f_{y} = 235 \frac{N}{mm^{2}}$ $f_{u} = 360 \frac{N}{mm^{2}}$ $f_{y} = 235 \frac{N}{mm^{2}}$ $f_{u} = 360 \frac{N}{mm^{2}}$ $f_{u} = 360 \frac{N}{mm^{2}}$ $f_{u} = 400 \frac{N}{mm^{2}}$ $f_{u} = 800 \frac{N}{mm^{2}}$	$f_{y} = 235 \frac{N}{mm^{2}} \qquad \qquad f_{u} = 360 \frac{N}{mm^{2}} \qquad \qquad E = 210000 \frac{N}{mm^{2}}$ $f_{y} = 235 \frac{N}{mm^{2}} \qquad \qquad f_{u} = 360 \frac{N}{mm^{2}} \qquad \qquad E = 210000 \frac{N}{mm^{2}}$ $f_{y} = 220 \frac{N}{mm^{2}} \qquad \qquad f_{u} = 400 \frac{N}{mm^{2}} \qquad \qquad E = 210000 \frac{N}{mm^{2}}$ $f_{y} = 640 \frac{N}{mm^{2}} \qquad \qquad f_{u} = 800 \frac{N}{mm^{2}} \qquad \qquad E = 210000 \frac{N}{mm^{2}}$

Instruction For Use:

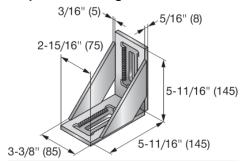
Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

_			
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012
•	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

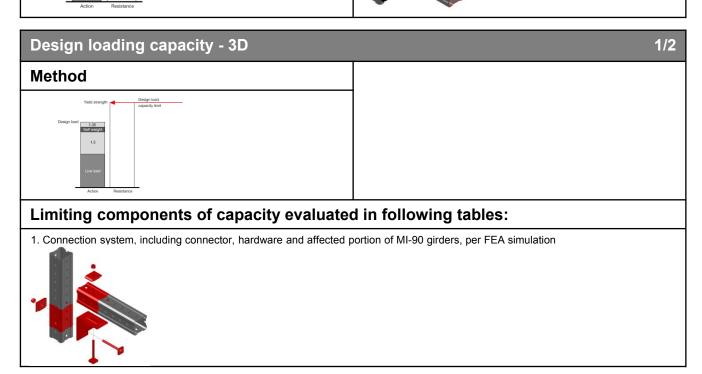

Software:

- Ansys 18.2
- Mathcad 15.0
- Microsoft Excel

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Simplified drawing:



Standard	Double One Side	Double Both Sides

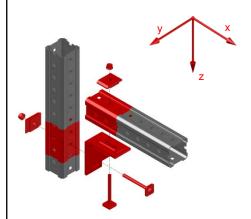
Loading case: Standard	Combinations covered by loading case	
Bill of Material for this loading case: For fixation on MI-90 girder 1x MIC-BAH 2179532 For fixation on MI-120 1x MIC-BAH 2179532 1x MIA-EH120 304888 MIA-EH90 remains unused	Connector used for Connecting MI-90 girder on either MI-90 or MI-120 girder in a 90-degree angle	

Recommended loading capacity - simplified for most common applications Method \pm Fy,rec. \pm Fz,rec. [kN] [kN] [kN] 8.59 4.07 8.59 These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Standard	Double One Side	Double Both Sides

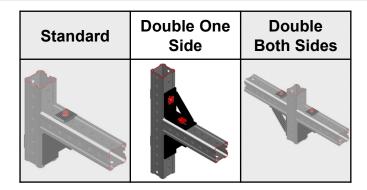

Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
12.88	20.80	6.10	6.10	20.80	12.88
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.62	0.62	0.00	0.00	0.00	0.00

includes cross section resistance of steel plate and contact pressure Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Loading case: Double One Side

Bill of Material for this loading case:

For fixation on MI-90 girder

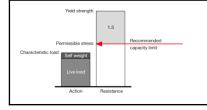
2x MIC-BAH 2179532 1x MIA-TP 305707

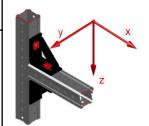
1xMI-EH90 and 1xMIA-EH-P remain unused

For fixation on MI-120

2x MIC-BAH 2179532 1x MIA-TP 305707 2x MIA-EH120 304888

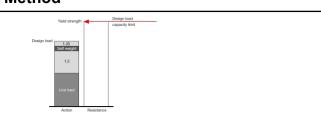
3xMIA-EH90 and 2xMIA-EH-P remain unused


Combinations covered by loading case


Connector used in pair for Connecting MI-90 girder on either MI-90 or MI-120 girder in a 90-degree angle

Recommended loading capacity - simplified for most common applications

Method


±Fx,rec.	±Fy,rec.	±Fz,rec.
[kN]	[kN]	[kN]
16.33	8.13	

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding

Design loading capacity - 3D

1/2

Method

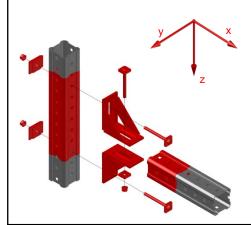
Limiting components of capacity evaluated in following tables:

1. Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Standard	Double One Side	Double Both Sides

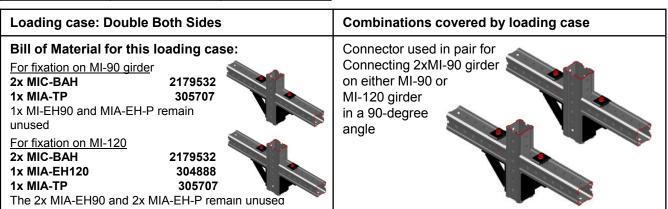

Design loading capacity - 3D

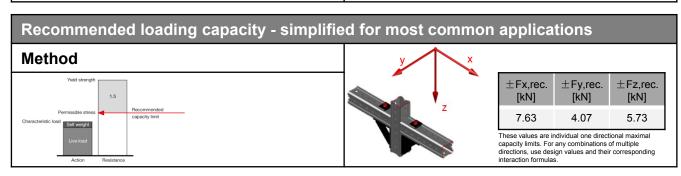
2/2

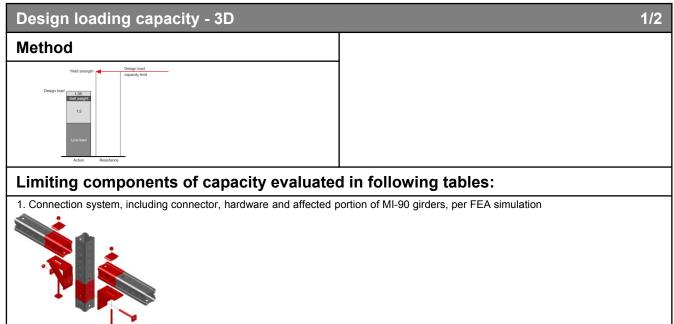
Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
24.50	28.60	12.20	12.20	34.10	34.10
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.87	1.87	2.10	2.10	1. 16	1. 16


includes cross section resistance of steel plate and contact pressure Interaction:


$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

Standard	Double One Side	Double Both Sides

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

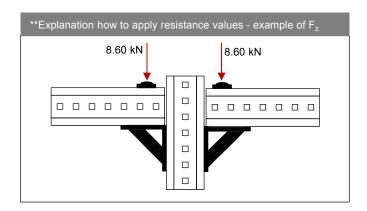
Standard	Double One Side	Double Both Sides


Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

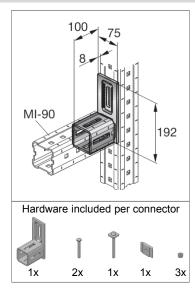

1. Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation Resistance values for one side of the connection system**

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
11.44**	17.64**	6.10**	6.10**	8.60**	8.60**
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.62**	0.62**	0.00	0.00	0.00	0.00

Interaction:

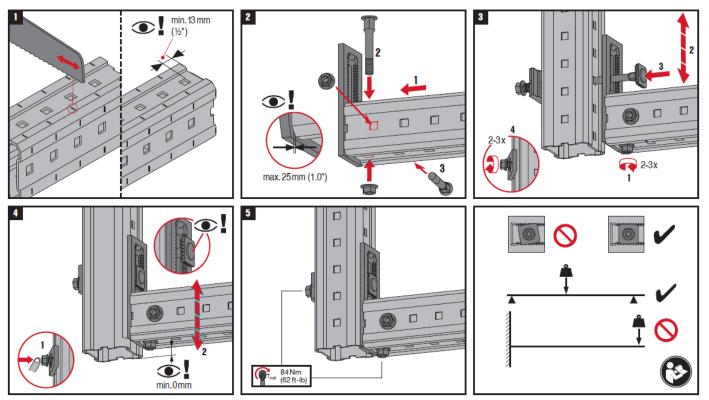
$$\frac{F_{x.Ed}}{F_{x.Pd}} + \frac{F_{y.Ed}}{F_{x.Pd}} + \frac{F_{z.Ed}}{F_{z.Pd}} + \frac{M_{x.Ed}}{M_{x.Pd}} + \frac{M_{y.Ed}}{M_{x.Pd}} + \frac{M_{z.Ed}}{M_{x.Pd}} \le 1$$

Designation Item number MIC-90-UH 2179533

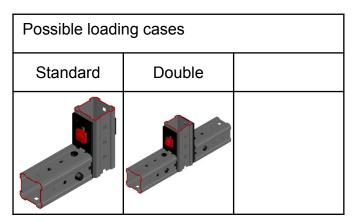

Corrosion protection:						
Material	HDG per	Zinc thickness, min. (µm)				
Connector, Plate	ISO 1461	55				
Toothed Plate	ISO 1461	45				
Backing Plate (Min.)	ISO 1461	45				
Bolt; Nut	ISO 1461	40; 45				

Weight:

2510 g incl. components


Submittal text:

Hot dipped galvanized, 90° Hilti MI angle connector, used for connecting two perpendicular MI girders. The baseplate has a serrated slot for improved shear loads and fine adjustment, and the connector is connected with an oblong hole. Not suitable for cantilever applications.



Material properties						
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus		
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$		
Toothed Plate S235JR - (DIN EN10025-2)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$		
Backing Plate (Min.) EN-GJMW-400-5 (DIN EN 1562)	$f_y = 220 \frac{N}{mm^2}$	$f_u = 400 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$		
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$		
Values for Modulus of Elasticity and Shear Modulu	us are according to EN 1993-	-1-1 and used for all Eurocod	e calculations			

Instruction For Use:

Design criteria used for loading capacity

Methodology:

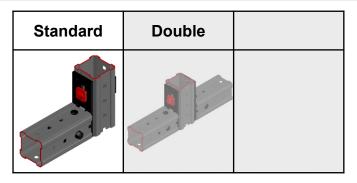
Analytic calculation

Standards and codes:

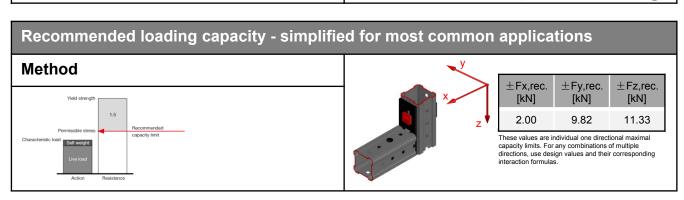
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

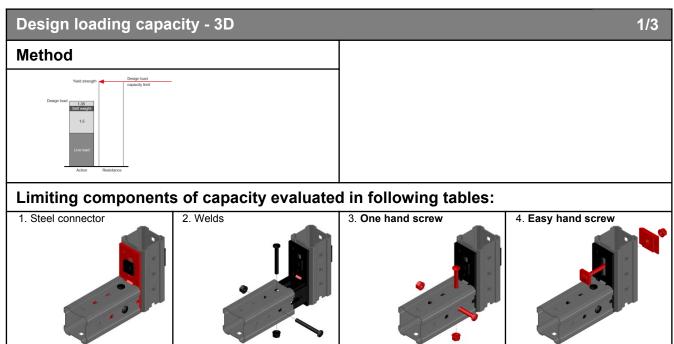
Software:

- Mathcad 15.0
- Microsoft Excel

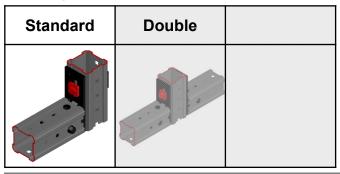

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Simplified drawing:

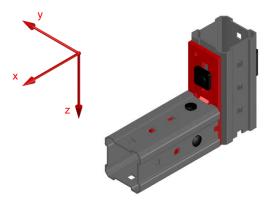


Combinations covered by loading case Loading case: Standard Bill of Material for this loading case Connector For fixation on MI-90 girder used Angle incl. all components for connecting 1x MIC-90-UH 2179533 MI-90 girder For fixation on MI-120 on either MI-90 1x MIC-90-UH 2179533 or MI-120 girder 1x MIA-EH120 304888 in a 90-degree angle The MIA-EH90 remain unused



Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

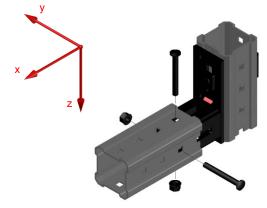

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector



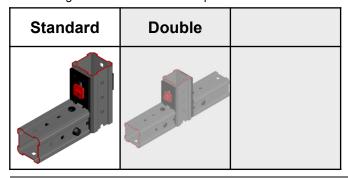
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.00	Not decisive	14.73	14.73	63.92	63.92
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.36	1.36	0.00	0.00	0.00	

includes cross section resistance of steel plate and contact pressure

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$

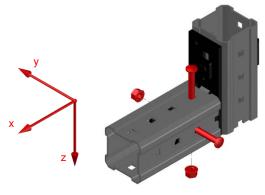
2. Welds

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.99	5.99	0.00	0.00	0.00	0.00


Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$

Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3/3

3. One hand screw -in connection to MIC-90-U and MI90-channel

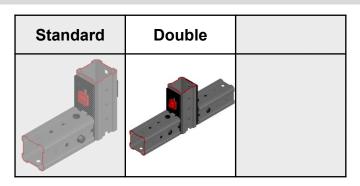
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.00	3.00	36.29	36.29	36.29	36.29
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.20	1.20	0.00	0.00	0.00	0.00

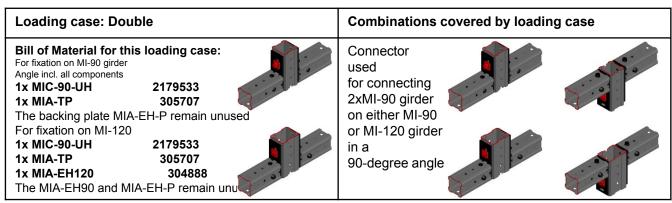
includes shear of the bolt, friction resistance, bearing resistance at connector plate and at channel MI90

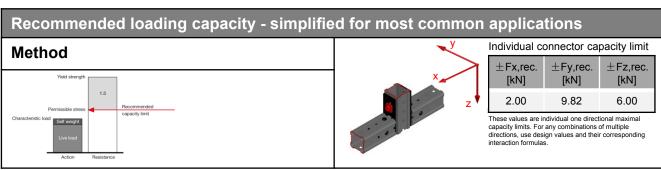
Interaction:

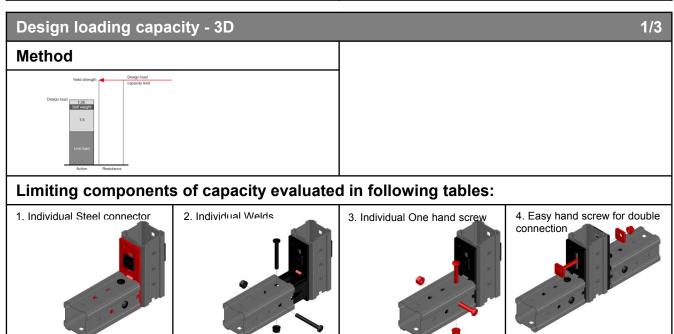
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

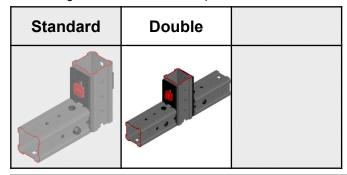
4. Easy hand screw- in connection MIC-90-U to MI90/120-channel




+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.00	Not decisive	Not decisive	Not decisive	16.99	16.99
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
Note decisive	Not decisive	0.00	0.00	0.00	0.00

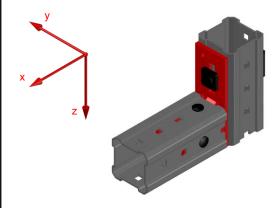

includes shear, bending and tension of the bolt, bearing resistance channel MI-90/120 and tooth plate, resistance of screw plate **Interaction:**


$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{Z.Ed}}{F_{Z.Rd}} \le 1$$



Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

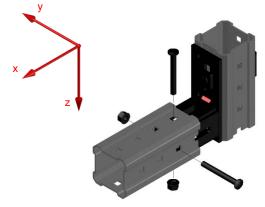

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Individual Steel connector



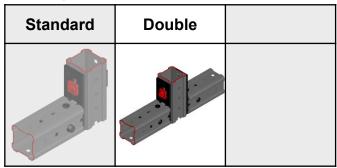
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.00	Not decisive	14.73	14.73	63.92	63.92
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.36	1.36	0.00	0.00	0.00	0.00

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

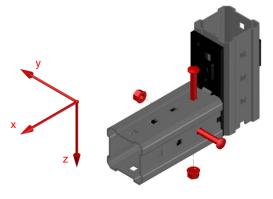
2. Individual Welds

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
5.99	5.99	0.00	0.00	0.00	0.00


Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$

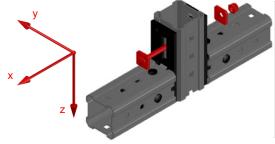
Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

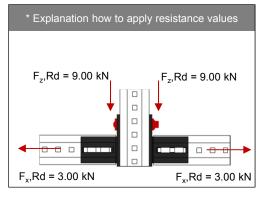
Design loading capacity - 3D

3/3

3. Individual One hand screws -in connection to MIC-90-U and MI90-channel



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.00	3.00	36.29	36.29	36.29	36.29
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.20	1.20	0.00	0.00	0.00	0.00


includes shear of the bolt, friction resistance, bearing resistance at connector plate and at channel MI90

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

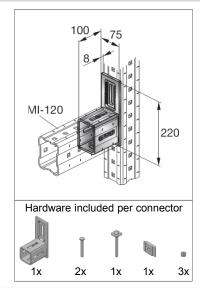
4. Easy hand screw for double connection - resistance values for one connector* in connection MIC-90-U to MI90/120-channel

ì	+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
	3.00*	Not decisive	Not decisive	Not decisive	9.00*	9.00*
	+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]

includes shear, bending and tension of the bolt, bearing resistance channel MI-90/120 and tooth plate, resistance of screw plate Interaction:

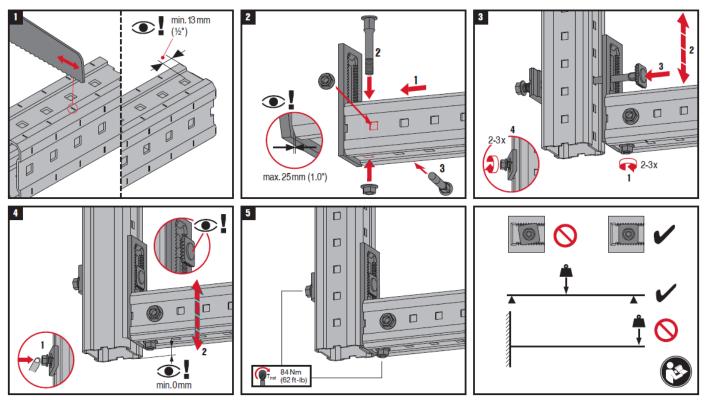
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} \leq 1$$

Designation Item number MIC-120-UH 2179534

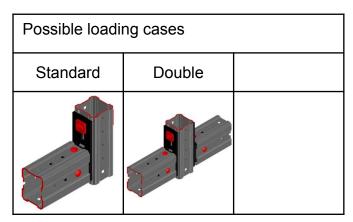

Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Connector, Plate	ISO 1461	55
Toothed Plate	ISO 1461	45
Backing Plate (Min.)	ISO 1461	45
Bolt; Nut	ISO 1461	40; 45

Weight:

2786 g incl. components


Submittal text:

Hot dipped galvanized, 90° Hilti MI angle connector, used for connecting two perpendicular MI girders. The baseplate has a serrated slot for improved shear loads and fine adjustment, and the connector is connected with an oblong hole. Not suitable for cantilever applications.



Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Toothed Plate S235JR - (DIN EN10025-2)	$f_y = 235 \frac{N}{mm^2}$	$f_{\rm u} = 360 \frac{\scriptscriptstyle N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Backing Plate (Min.) EN-GJMW-400-5 (DIN EN 1562)	$f_y = 220 \frac{\scriptscriptstyle N}{mm^2}$	$f_u = 400 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$ 1-1 and used for all Eurocoo	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Instruction For Use:

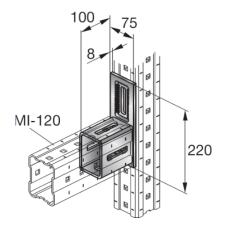
Design criteria used for loading capacity

Methodology:

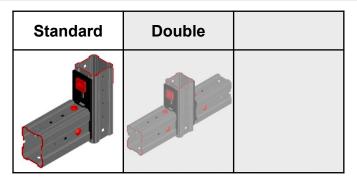
Analytic calculation

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

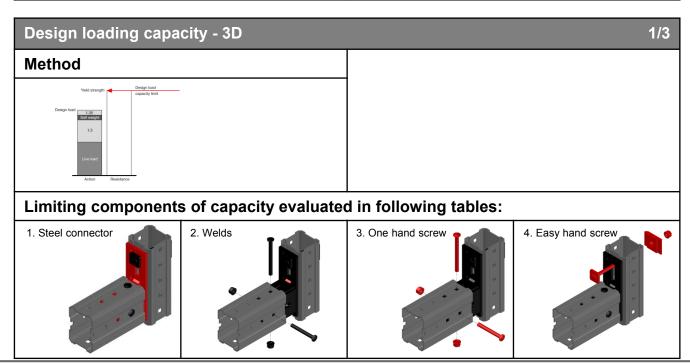

Software:

- Mathcad 15.0
- Microsoft Excel

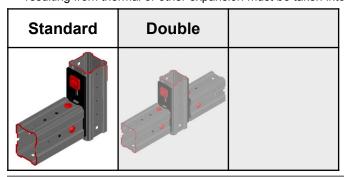

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Simplified drawing:

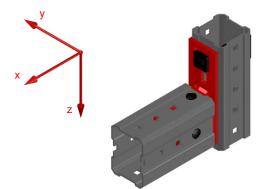


Combinations covered by loading case Loading case: Standard Bill of Material for this loading case Connector For fixation on MI-90 girder used Angle incl. all components for connecting 1x MIC-90-UH 2179534 MI-120 girder For fixation on MI-120 on either MI-90 1x MIC-90-UH 2179533 or MI-120 girder 1x MIA-EH120 304888 in a 90-degree angle The MIA-EH90 remain unused


Recommended loading capacity - simplified for most common applications Method \pm Fx,rec. \pm Fy,rec. \pm Fz,rec. [kN] [kN] [kN] 1.33 10.55 11.33 These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

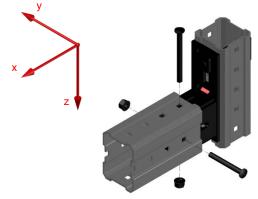

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector



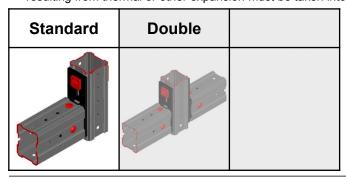
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
2.60	Not decisive	15.83	15.83	63.92	63.92
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.14	1.14	0.00	0.00	0.00	0.00

includes cross section resistance of steel plate and contact pressure

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

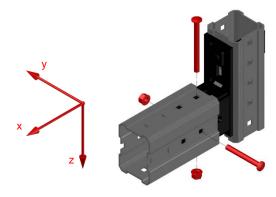
2. Welds

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
336.02	336.02	99.77	99.77	174.59	174.59
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.73	9.73	0.00	0.00	0.00	0.00


Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{v.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$

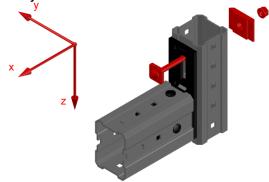
Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3/3

3. One hand screw -in connection to MIC-90-U and MI90-channel

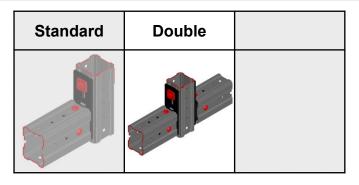

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
2.00	2.00	41.47	41.47	41.47	41.47
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.99	1.99	0.00	0.00	0.00	0.00

includes shear of the bolt, friction resistance, bearing resistance at connector plate and at channel MI90

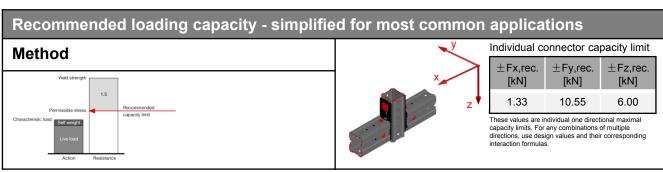
Interaction:

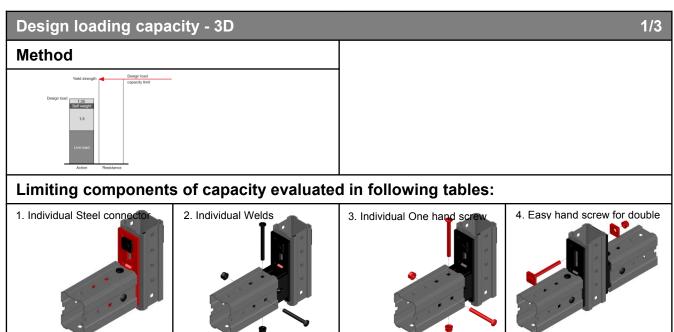
$$\frac{F_{X,Ed}}{F_{X,Rd}} + \frac{F_{Y,Ed}}{F_{y,Rd}} + \frac{F_{Z,Ed}}{F_{Z,Rd}} + \frac{M_{X,Ed}}{M_{X,Rd}} \leq 1$$

4. Easy hand screw- in connection MIC-90-U to MI90/120-channel

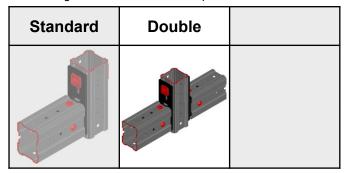


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
2.59	Not decisive	Not decisive	Not decisive	16.99	16.99
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
Not	Not	0.00	0.00	0.00	0.00


includes shear, bending and tension of the bolt, bearing resistance channel MI-90/120 and tooth plate, resistance of screw plate Interaction:

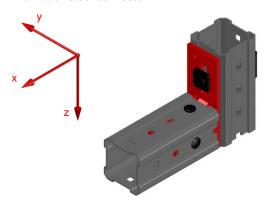

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} \leq 1$$

Loading case: Double Combinations covered by loading case Bill of Material for this loading case: Connector For fixation on MI-90 girder used Angle incl. all components for connecting 1x MIC-120-UH 2179534 2xMI-120 girder 1x MIA-TP 305707 The backing plate MIA-EH-P remain unused on either MI-90 For fixation on MI-120 or MI-120 girder 1x MIC-90-UH 2179533 in a 1x MIA-TP 305707 90-degree angle 304888 1x MIA-EH120 The MIA-EH90 and MIA-EH-P remain unused



Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

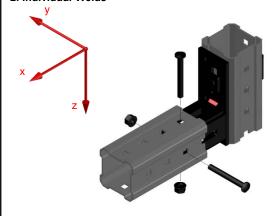

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Individual Steel connector



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
2.60	Not decisive	15.83	15.83	63.92	63.92
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.14	1.14	0.00	0.00	0.00	0.00

Interaction:

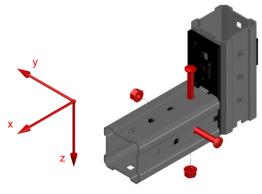
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$

2. Individual Welds


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
336.02	336.02	99.77	99.77	174.59	174.59
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.73	9.73	0.00	0.00	0.00	0.00

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

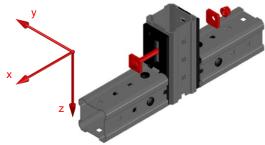
Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

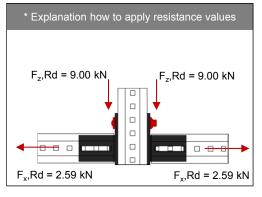
Design loading capacity - 3D

3/3

3. Individual One hand screws -in connection to MIC-90-U and MI90-channel


+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
2.00	2.00	41.47	41.47	41.47	41.47
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.99	1.99	0.00	0.00	0.00	0.00

includes shear of the bolt, friction resistance, bearing resistance at connector plate and at channel MI90


Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

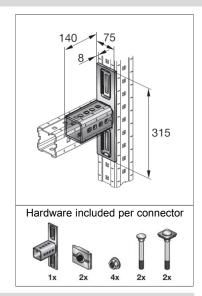
4. Easy hand screw for double connection - resistance values for one connector* in connection MIC-90-U to MI90/120-channel

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
2.59*	Not decisive	Not decisive	Not decisive	9.00*	9.00*
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]

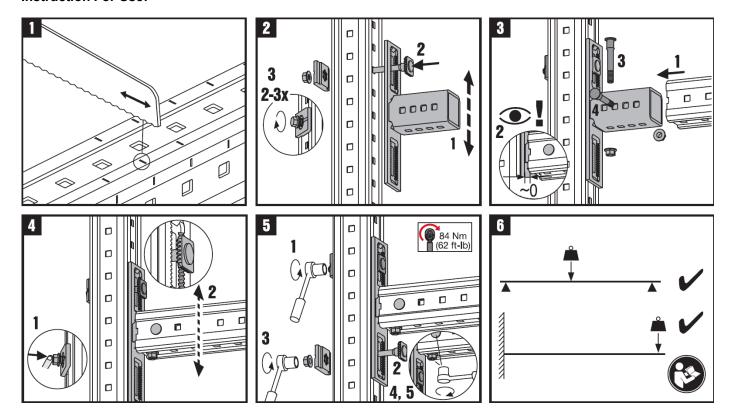
includes shear, bending and tension of the bolt, bearing resistance channel MI-90/120 and tooth plate, resistance of screw plate Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} \leq 1$$

Designation	Item number
MIC-90-L	304805


Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Connector, Plate	ISO 1461	55
Toothed Plate	ISO 1461	45
Backing Plate (Min.)	ISO 1461	45
Bolt; Nut	ISO 1461	40; 45

Weight:


4.05kg incl. components

Submittal text:

Hot dipped galvanized, 90° Hilti MI angle connector, typically used for connecting two perpendicular MI girders. The baseplate has a serrated slot for improved shear loads and fine adjustment, and the connector is connected with fixed holes instead of an oblong hole. Suitable for cantilever applications.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Toothed Plate S235JR - (DIN EN10025-2)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Backing Plate (Min.) EN-GJMW-400-5 (DIN EN 1562)	$f_y = 220 \frac{\scriptscriptstyle N}{mm^2}$	$f_u = 400 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_{\rm u} = 800 \frac{\scriptscriptstyle N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modul	us are according to EN 1993-	-1-1 and used for all Eurocod	e calculations	

Possible loading cases		
Standard		

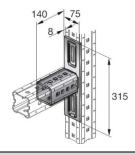
Design criteria used for loading capacity

Methodology:

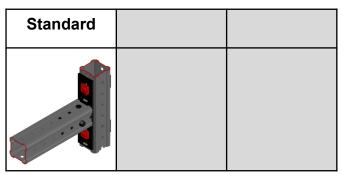
- Finite element analysis
- Analytic calculation

Standards and codes:

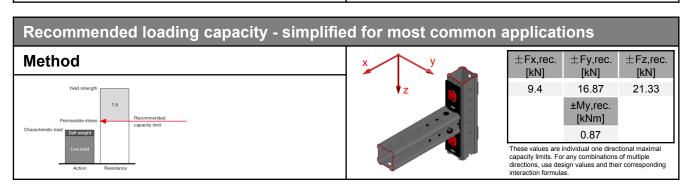
•	EN 1990 03.2003	Basics of structural design	
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	09.2011
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012
•	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

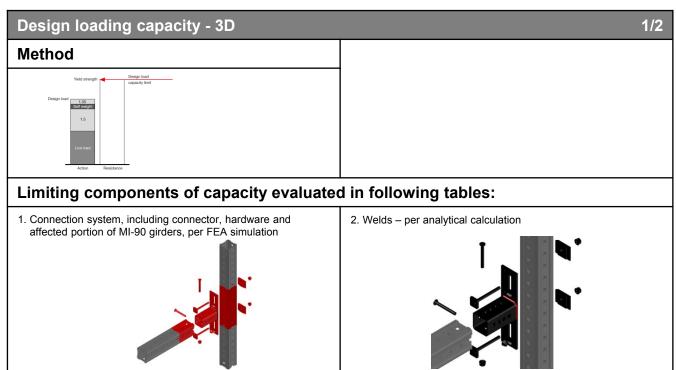

Software:

- Ansys 18.2
- Mathcad 15.0
- Microsoft Excel

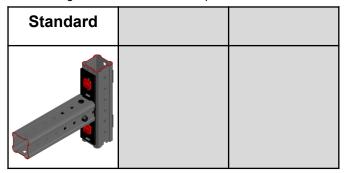

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Simplified drawing:

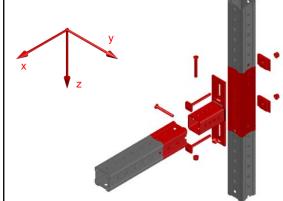


Loading case: Standard Combinations covered by loading case Bill of Material for this loading case: Connector used for For fixation on MI-90 girder Connecting MI-90 girder Connector incl. all connecting hardware on either MI-90 or 1x MIC-90-L 304805 MI-120 girder For fixation on MI-120 Connector incl. all connecting hardware in a 90-degree 1x MIC-90-L 304804 angle 2x MIA-EH120 304888 The MIA-EH90 remain unused



Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

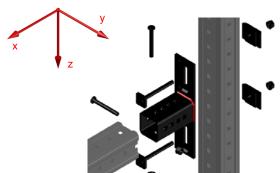

Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
14.10	63.30	25.30	25.30	32.00	32.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.95	2.95	1.30	1.30	0.53	

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Welds - per analytical calculation

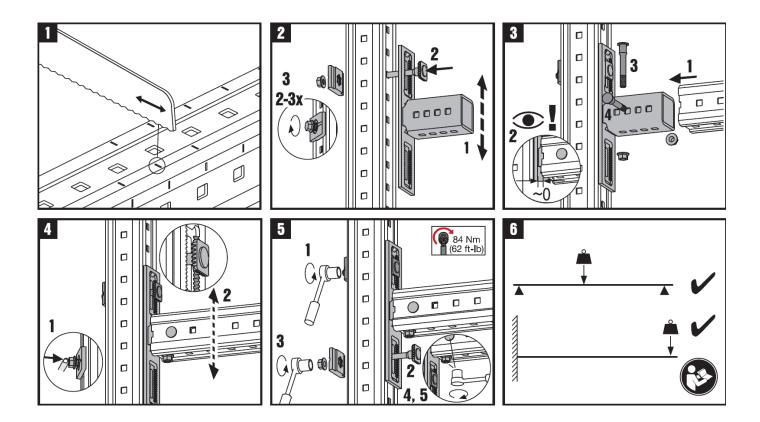
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
230.12	230.12	75.53	75.53	75.53	75.53
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.64	5.64	3.45	3.45	3.45	3.45

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

Designation Item number MIC-90-L-AP 305710

Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Connector, Plate	ISO 1461	55

315 Hardware included per connector


Weight:

3.00kg without components

Submittal text:

Hot dipped galvanized, 90° Hilti MI angle connector, typically used for connecting two perpendicular MI girders. The baseplate has a serrated slot for improved shear loads and fine adjustment, and the connector is connected with fixed holes instead of an oblong hole. Suitable for cantilever applications.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Flasticity and Shear Modul	us are according to FN 1993.	1-1 and used for all Furnced	e calculations	

Possible loading cases				
Standard				

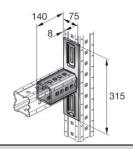
Design criteria used for loading capacity

Methodology:

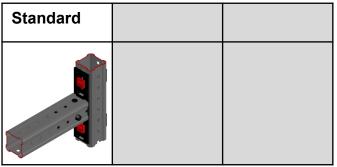
- · Finite element analysis
- Analytic calculation

Standards and codes:

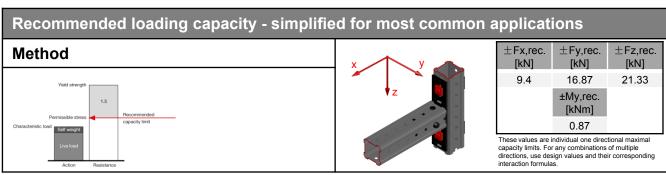
•	EN 1990 03.2003	Basics of structural design	
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules- Supplementary rules for cold-formed members and sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design of joints	03.2012
•	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

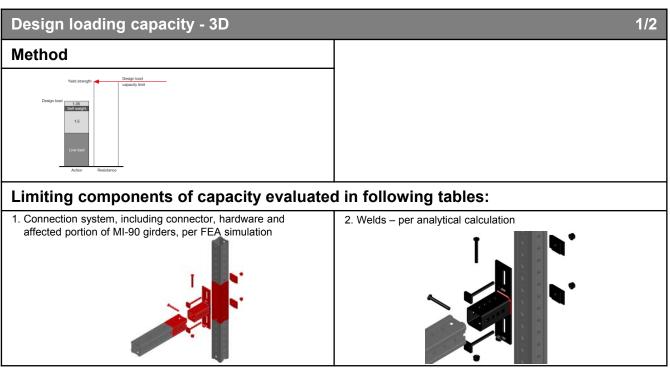

Software:

- Ansys 18.2
- Mathcad 15.0
- Microsoft Excel

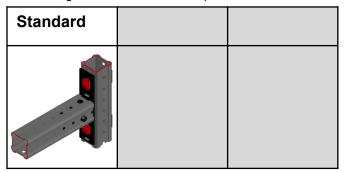

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Simplified drawing:

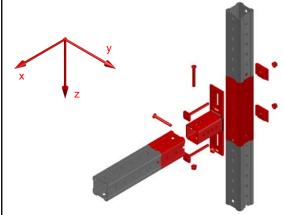


Loading case: Standard Combinations covered by loading case Bill of Material for this loading case: Connector used for 305710 1x MIC-90-L-AP Connecting MI-90 girder Components not included on either MI-90 or 2x MIA-EH-P 304891 MI-120 girder 2x M12-F-SL WS3/4 382897 2x MIA-OH90 304889 in a 90-degree For fixation on MI-90 girder angle 304887 2x MIA-EH90 For fixation on MI-120 2x MIA-EH120 304888



Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

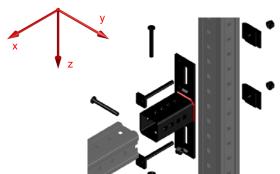

Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
14.10	63.30	25.30	25.30	32.00	32.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.95	2.95	1.30	1.30	0.53	0.53

Interaction:

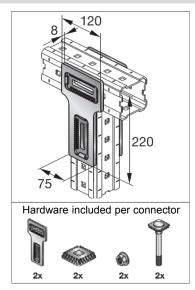
$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

2. Welds - per analytical calculation

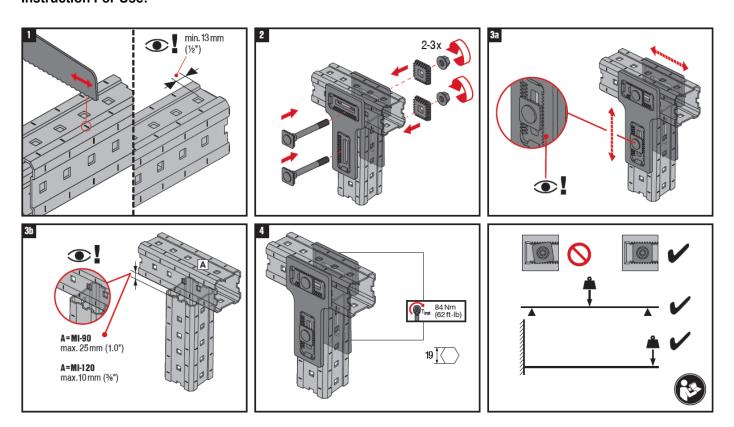
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
230.12	230.12	75.53	75.53	75.53	75.53
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.64	5.64	3.45	3.45	3.45	3.45

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

DesignationItem numberMIC-T304807


Corrosion protection:					
Material	HDG per	Zinc thickness, min. (µm)			
Connector, Plate	ISO 1461	55			
Toothed Plate	ISO 1461	45			
Backing Plate (Min.)	ISO 1461	45			
Bolt; Nut	ISO 1461	40; 45			

Weight:


2510 g incl. components

Descriptions:

Hot dipped galvanized, 90° Hilti MI angle connector, typically used for connecting two perpendicular MI girders, where the horizontal girder sits on top of the vertical girder. Oblong holes enable fine adjustment and are serrated to improve holding and load values. Connector is used on the side of the girders.

Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
$f_y = 220 \frac{N}{mm^2}$	$f_u = 400 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
$f_y = 640 \frac{\scriptscriptstyle N}{mm^2}$	$f_{\rm u} = 800 \frac{\scriptscriptstyle N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
	$f_{y} = 235 \frac{N}{mm^{2}}$ $f_{y} = 235 \frac{N}{mm^{2}}$ $f_{y} = 220 \frac{N}{mm^{2}}$ $f_{y} = 640 \frac{N}{mm^{2}}$	$f_{y} = 235 \frac{N}{mm^{2}} \qquad \qquad f_{u} = 360 \frac{N}{mm^{2}}$ $f_{y} = 235 \frac{N}{mm^{2}} \qquad \qquad f_{u} = 360 \frac{N}{mm^{2}}$ $f_{y} = 220 \frac{N}{mm^{2}} \qquad \qquad f_{u} = 400 \frac{N}{mm^{2}}$ $f_{y} = 640 \frac{N}{mm^{2}} \qquad \qquad f_{u} = 800 \frac{N}{mm^{2}}$	$f_y = 235 \frac{N}{mm^2} \qquad \qquad f_u = 360 \frac{N}{mm^2} \qquad \qquad E = 210000 \frac{N}{mm^2}$ $f_y = 235 \frac{N}{mm^2} \qquad \qquad f_u = 360 \frac{N}{mm^2} \qquad \qquad E = 210000 \frac{N}{mm^2}$ $f_y = 220 \frac{N}{mm^2} \qquad \qquad f_u = 400 \frac{N}{mm^2} \qquad \qquad E = 210000 \frac{N}{mm^2}$ $f_y = 640 \frac{N}{mm^2} \qquad \qquad f_u = 800 \frac{N}{mm^2} \qquad \qquad E = 210000 \frac{N}{mm^2}$

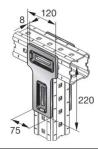
Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

•	EN 1990 03.2003	Basics of structural design	
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012
•	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008


Software:

- Ansys 18.2
- Mathcad 15.0
- Microsoft Excel

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

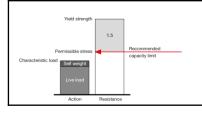
Simplified drawing:

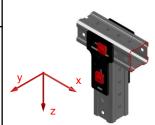
Loading case: MIC-T 90-90

Bill of Material for this loading case:

Angle incl. all components 1x MIC-T (pair)

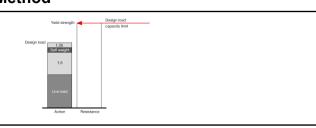
304807


Combinations covered by loading case


Connector used for perpendicular connections of two MI-90 girders, where Horizontal girder sits on top of the vertical girder

Recommended loading capacity - simplified for most common applications

Method


±Fx,rec.	±Fy,rec.	±Fz,rec.
[kN]	[kN]	[kN]
10.17	5.67	

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

Design loading capacity - 3D

1/2

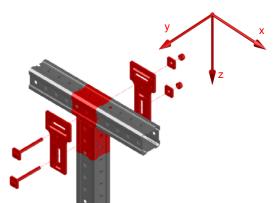
Method

Limiting components of capacity evaluated in following tables:

1. Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

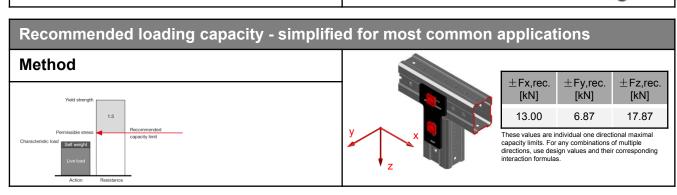

Design loading capacity - 3D

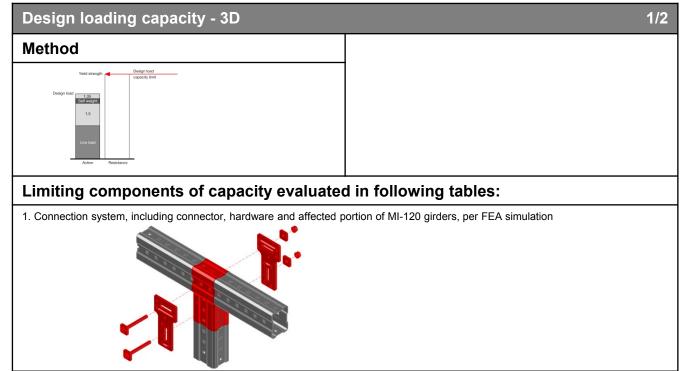
2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation

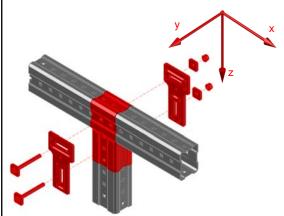

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
15.25	15.25	8.50	8.50	26.80	26.80
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.75	0.75	1.60	1.60	0.70	0.70


$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

Loading case: MIC-T 120-120 Combinations covered by loading case Bill of Material for this loading case: Connector used For perpendicular Angle incl. all components connections 304807 1x MIC-T (pair) of two MI-120 girders, where Horizontal girder sits on top of the vertical girder

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/2

Summary of design loads*

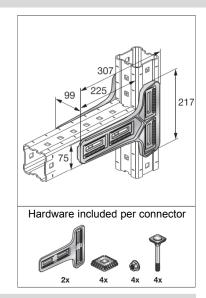
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation

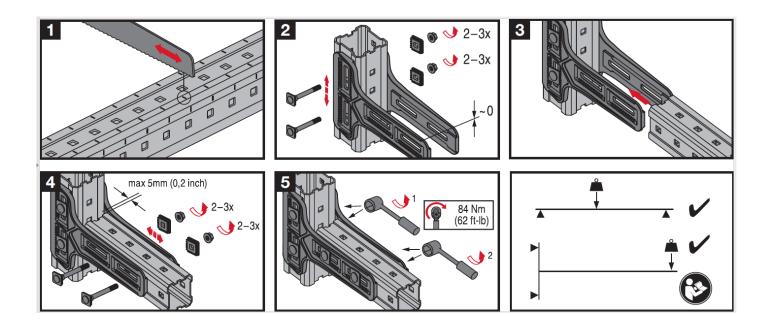
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
19.50	19.50	10.30	10.30	26.80	26.80
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.80	0.80	1.95	1.95	0.85	

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

DesignationItem numberMIC-90-LH2165050


Corrosion protection:					
Material	HDG per	Zinc thickness, min. (µm)			
Connector, Plate	ISO 1461	55			
Toothed Plate	ISO 1461	45			
Bolt; Nut	ISO 1461	40; 45			

Weight:


4840 g incl. components

Description:

Hot dipped galvanized, 90° Hilti MI angle connector, typically used for connecting two perpendicular MI girders, where the horizontal girder is connected to the side of the vertical girder. Oblong holes enable fine adjustment and are serrated to improve holding and load values. Connector is

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate C30, 1.0528 (DIN EN 10250-2)	$f_y = 250 \frac{\scriptscriptstyle N}{mm^2}$	$f_u = 480 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Toothed Plate S235JR - (DIN EN10025-2)	$f_y = 235 \frac{\scriptscriptstyle N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Values for Modulus of Élasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations				

Possible loading cases				
Standard				

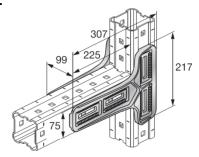
Design criteria used for loading capacity

Methodology:

- Analytic calculation
- Finite element analysis
- Hardware tests

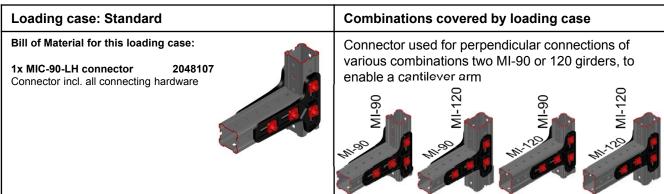
Standards and codes:

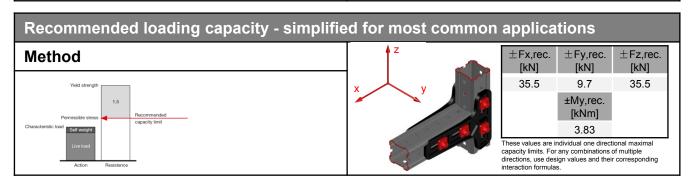
EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

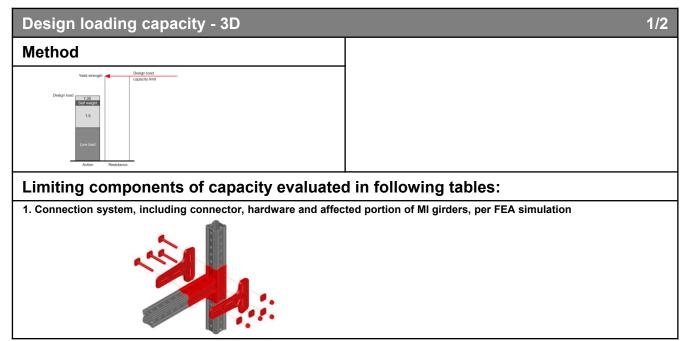

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

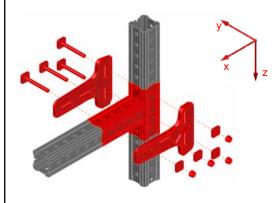

Simplified drawing:





Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/2

Summary of design loads*

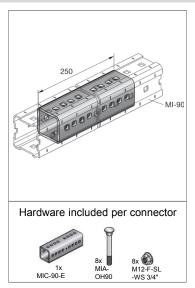
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI girders, per FEA simulation

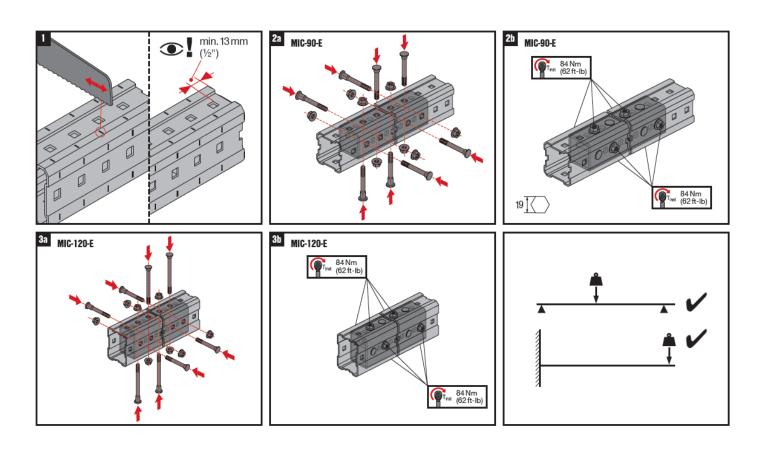
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
56.35	56.35	20.70	20.70	53.24	53.24
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.24	2.24	5.75	5.75	1.31	1.31

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Designation	Item number
MIC-90-E	304809


Corrosion protection:						
Material	HDG per	Zinc thickness, min. (µm)				
Connector, Plate	ISO 1461	55				
Bolt; Nut	ISO 1461	40; 45				

Weight:


8.12 lb (3685 g) incl. components

Description:

Hot dipped galvanized, Hilti MI extension connector typically used for connecting two MI-90 girders together to form a continuous girder. Fixed with 8 bolts and lock-nuts through the girder to enable a strong hold and vibration resistance.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2) Values for Modulus of Elasticity and Shear Modulus	$f_y = 640 \frac{N}{mm^2}$	$f_{\rm u} = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Possible loading cases				
Standard				

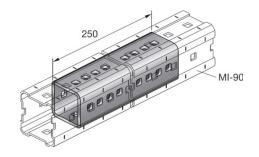
Design criteria used for loading capacity

Methodology:

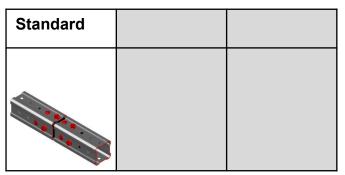
- Analytic calculation
- Finite element analysis
- Hardware tests

Standards and codes:

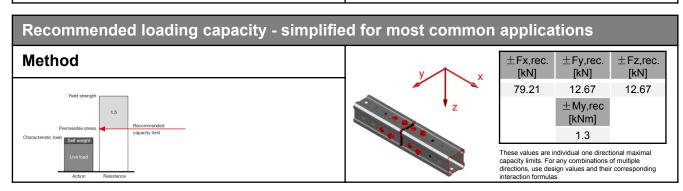
EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

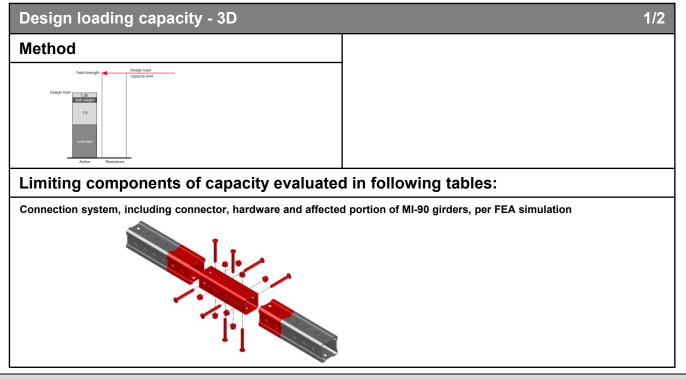

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

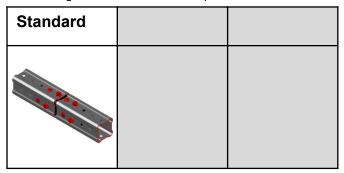

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Simplified drawing:

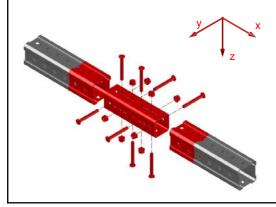


Loading case: Standard		Combinations covered by loading case		
Bill of Material for this load 1x MIC-90-E Connector incl. all connecti	304809		Connector used for extension of MI-90 girders	



Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/2

Summary of design loads*

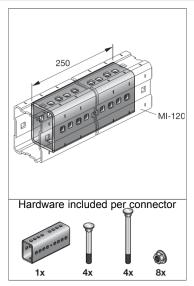
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector

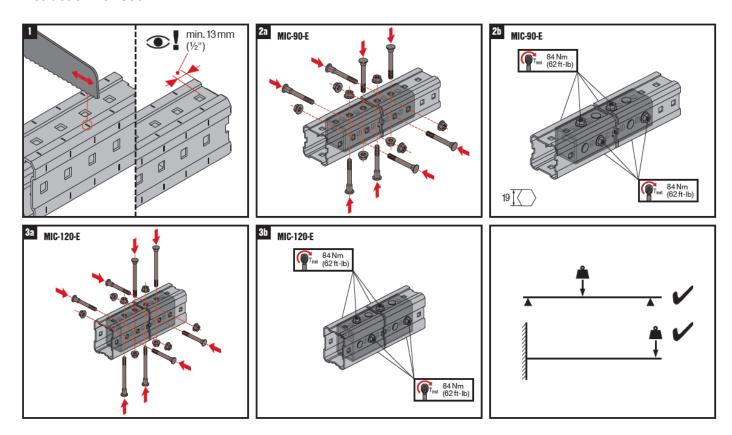
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
118.82	118.82	19.00	19.00	19.00	19.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.10	2.10	1.95	1.95	1.95	

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

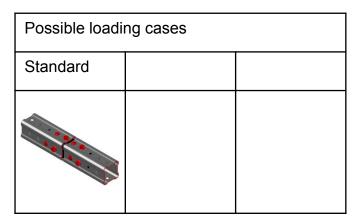
Item number **Designation** MIC-120-E 304810


Corrosion protection:						
Material	HDG per	Zinc thickness, min. (µm)				
Connector, Plate	ISO 1461	55				
Bolt; Nut	ISO 1461	40; 45				

Weight:


4490 g incl. components

Description:


Hot dipped galvanized, Hilti MI extension connector typically used for connecting two MI-120 girders together to form a continuous girder. Fixed with 8 bolts and lock-nuts through the girder to enable a strong hold and vibration resistance.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2) Values for Modulus of Elasticity and Shear Modulus	$f_y = 640 \frac{N}{mm^2}$	$f_{\rm u} = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Design criteria used for loading capacity

Methodology:

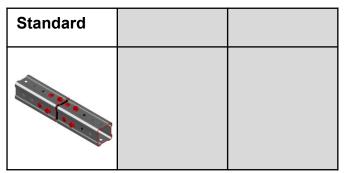
- Analytic calculation
- Finite element analysis
- Hardware tests

Standards and codes:

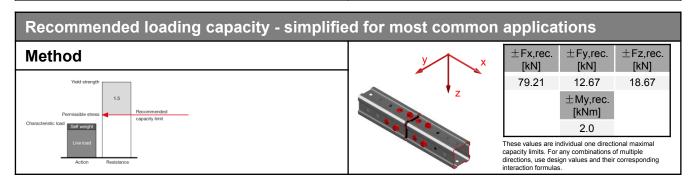
EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

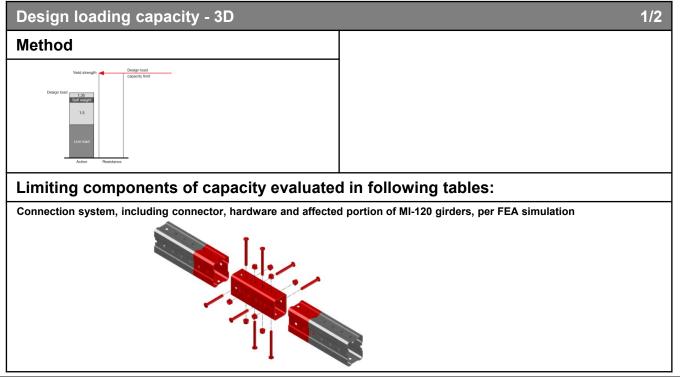
Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

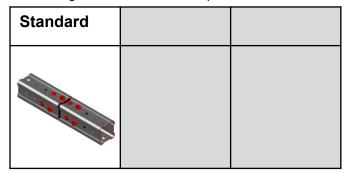

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Simplified drawing:

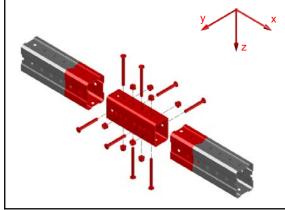


Loading case: Standard	Combinations covered by loading case	
Bill of Material for this loading case: 1x MIC-120-E 304810 Connector incl. all connecting hardware	Connector used for extension of MI-120 girder	



Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/2

Summary of design loads*

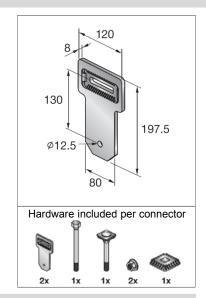
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation

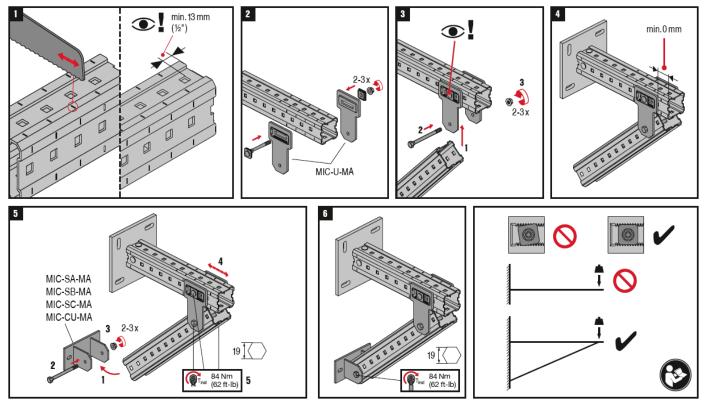
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
118.82	118.82	19.00	19.00	28.00	28.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.15	3.15	3.00	3.00	1.95	1.95

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Designation Item number MIC-U-MA 304806


Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Connector, Plate	ISO 1461	55
Toothed Plate	ISO 1461	45
Bolt; Nut	ISO 1461	40; 45

Weight:


2630 g incl. components

Description:

Hot dipped galvanized Hilti MI connector, typically used for connecting two MI girders, where one girder is braced / supported by the other at an angle, to improve total load capacity of the structure. One oblong hole enables fine adjustment and is serrated to improve holding. Connector is used on the sides

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Toothed Plate S235JR - (DIN EN10025-2)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_{\rm u} = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modul	us are according to EN 1993-	-1-1 and used for all Eurocod	e calculations	

Possible loading cases				
Standard				

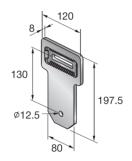
Design criteria used for loading capacity

Methodology:

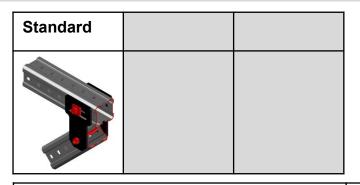
- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008
	1 11	


Software:

- **Ansys 16.0**
- Microsoft Excel
- Mathcad 15


Validity:

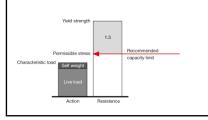
- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

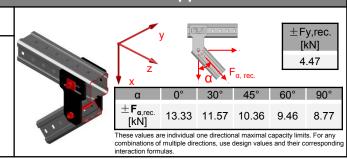
Simplified drawing:

Loading case: Standard

Bill of Material for this loading case:

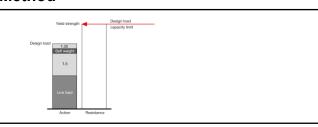
1x MIC-U-MA (pair) Connector incl. all connecting hardware


Combinations covered by loading case


Connector used for an angular connection of two MI-90 Or MIQ-90 girders (bracket brace)

Recommended loading capacity - simplified for most common applications

Method

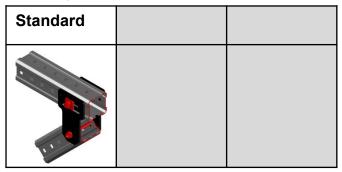


Design loading capacity - 3D

1/2

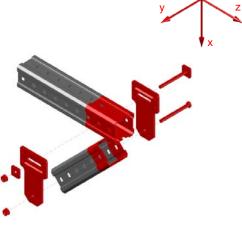
Method

Limiting components of capacity evaluated in following tables:


Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation

Validity:

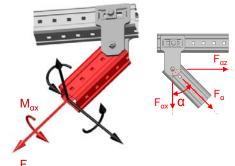
- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


Connection system, including connector, hardware and affected portion of MI-90 girders, per FEA simulation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
20.00	20.00	6.70	6.70	13.15	13.15
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.75	0.75	0.00	0.00	0.00	0.00

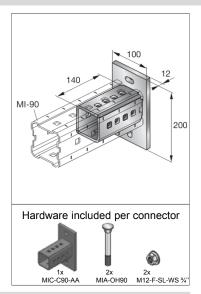
Note: The torsional moment M_x is referred to the local x-direction of the inclined profile in plane x/z.

$$F_{x.Ed\alpha} := F_{\alpha} \cdot \cos(\alpha)$$

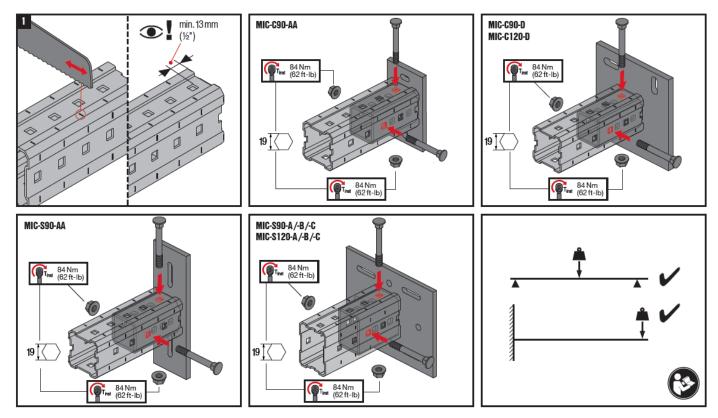
 $F_{z.Ed\alpha} := F_{\alpha} \cdot \sin(\alpha)$

$$\left(\frac{F_{x.Ed\alpha}}{F_{x.Rd}}\right)^2 + \left(\frac{F_{z.Ed\alpha}}{F_{z.Rd}}\right)^2 + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$

Designation Item number MIC-C90-AA 304825


Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Connector, Plate	ISO 1461	55
Bolt; Nut	ISO 1461	40; 45

Weight:


3490 g incl. components

Description:

Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-90 girder to concrete. Two oblong anchor holes enable fine tuning of baseplate position, and girder is connected using bolts through fixed holes.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations				

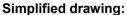
Possible loading cases				
Standard				

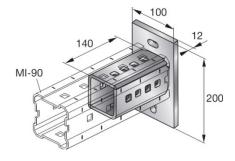
Design criteria used for loading capacity

Methodology:

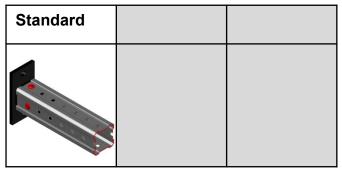
- Finite element analysis
- Analytic calculation

Standards and codes:

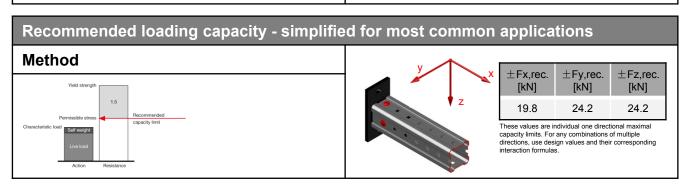

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008
	, ,,	

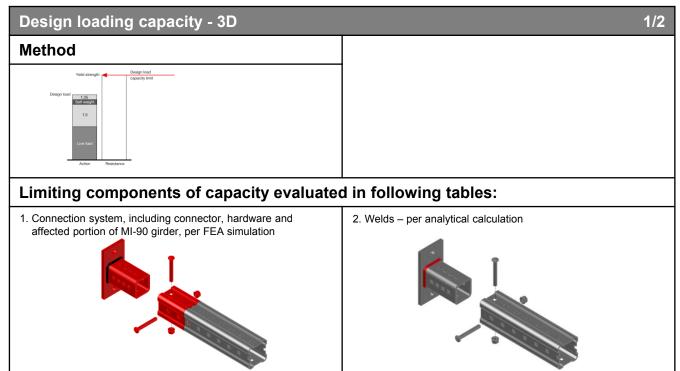

Software:

- **Ansys 16.0**
- Microsoft Excel
- Mathcad 15

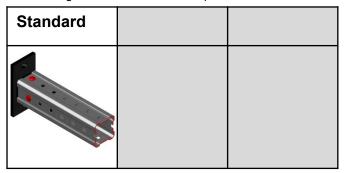

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.



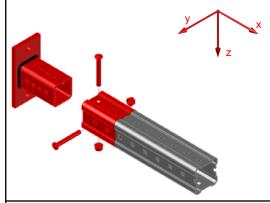


Loading case: Standard Combinations covered by loading case Bill of Material for this loading case: Baseplate connector used for a perpendicular connection of 1x MIC-C90-AA 304825 an MI-90 girder to concrete Connector incl. all connecting hardware



Validity:

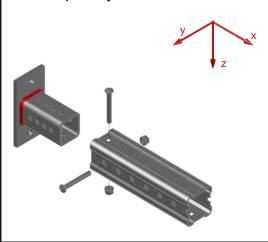
- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
50.30	63.30	31.60	31.60	31.60	31.60
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.85	2.85	1.81	1.81	1.00	

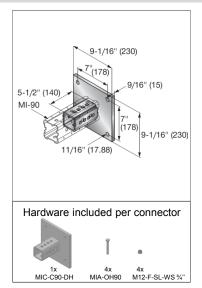
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{v.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{v.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

2. Welds - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
230.12	230.12	49.31	49.31	49.31	49.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.64	5.64	3.45	3.45	3.45	3.45

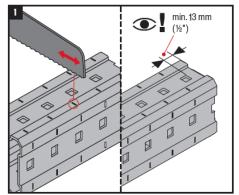
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

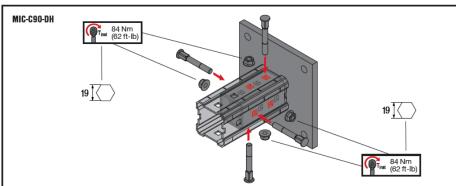
Designation Item number MIC-C90-DH 2174661

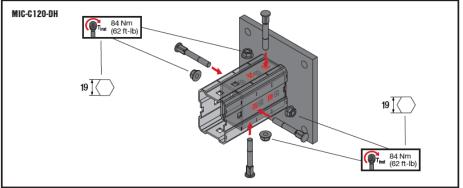

Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Connector, Plate	ISO 1461	55
Bolt; Nut	ISO 1461	40; 45

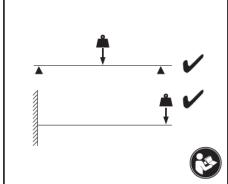
Weight:

8228g incl. components


Description:


Hilti Hot-dipped galvanized baseplate connector, used for anchoring an MI-90 girder to concrete. Four round anchor holes of baseplate enable anchoring, and girder is connected using bolts through fixed holes.




Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2) Values for Modulus of Flasticity and Shear Modulus	$f_y = 640 \frac{N}{mm^2}$	$f_{\rm u} = 800 \frac{\scriptscriptstyle N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Instruction For Use:

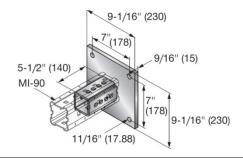
Possible loading cases					
Standard					

Design criteria used for loading capacity

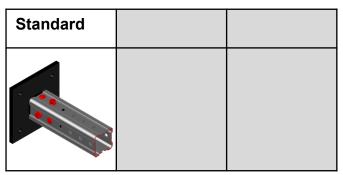
Methodology:

- Finite element analysis
- Analytic calculation

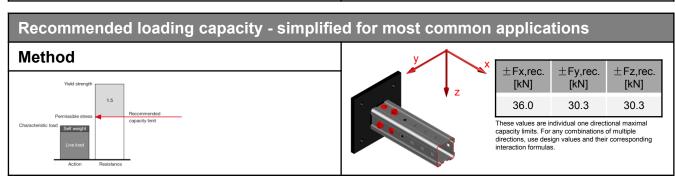
Standards and codes:

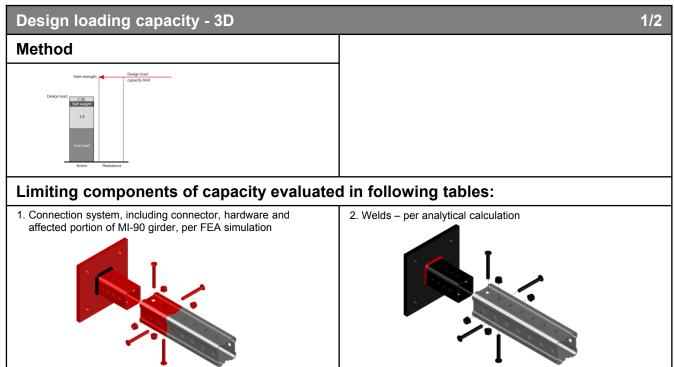

Otaliaalao alla ot	, do 0 :	
EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:

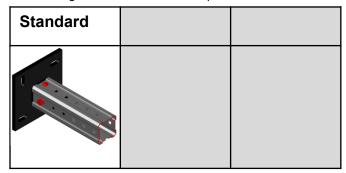

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

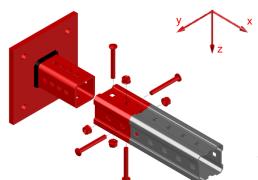


Loading case: Standard Combinations covered by loading case Bill of Material for this loading case: Baseplate connector used for a perpendicular connection of 1x MIC-C90-DH 2174661 an MI-90 girder to concrete Connector incl. all connecting hardware



Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

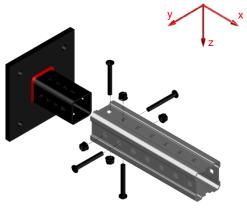

Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
90.00	118.82	45.40	45.40	45.40	45.40
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.60	3.60	3.00	3.00	3.00	3.00

Interaction:

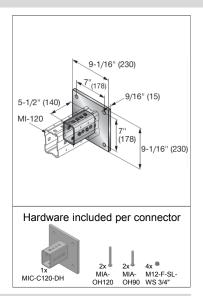
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Welds - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
230.12	230.12	49.31	49.31	49.31	49.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.64	5.64	3.45	3.45	3.45	3.45

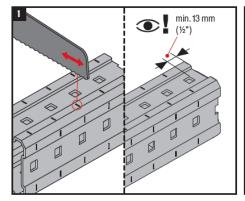
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

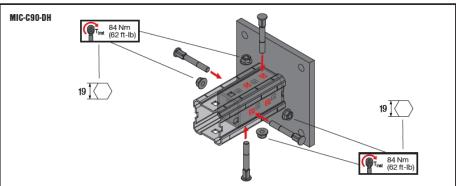
Designation Item number MIC-C120-DH 2174662

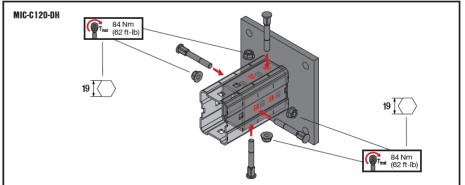

Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Connector, Plate	ISO 1461	55
Bolt; Nut	ISO 1461	40; 45

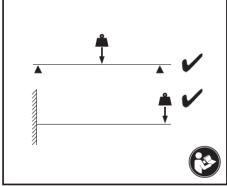
Weight:

8688 g incl. components


Description:


Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-120 girder to concrete. Four round anchor holes in baseplate for attachment to concrete, and girder is connected using bolts through fixed holes.




Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{\scriptscriptstyle N}{mm^2}$	$f_{\rm u} = 800 \frac{\scriptscriptstyle N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modul	us are according to EN 1993-	1-1 and used for all Eurocod	e calculations	

Instruction For Use:

Page 2/4

MIC-C120-DH Base Material Connector - Concrete

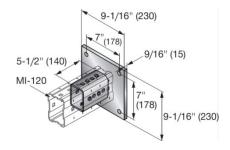
Possible loading cases					
Standard					

Design criteria used for loading capacity

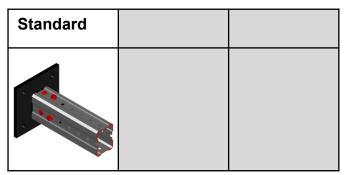
Methodology:

- Finite element analysis
- Analytic calculation

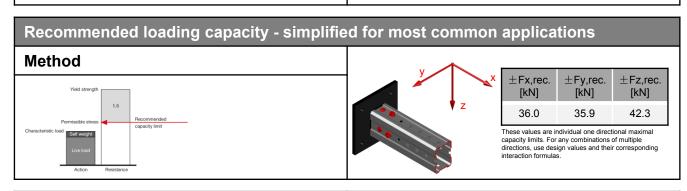
Standards and codes:

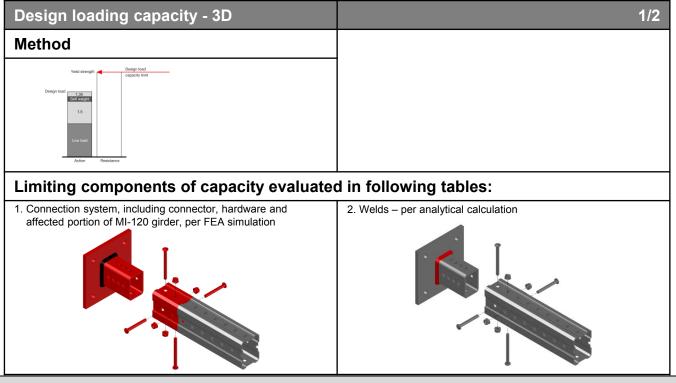

	*** * ·	
EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008
	·	

Software:

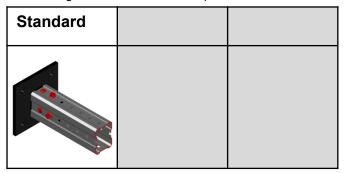

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

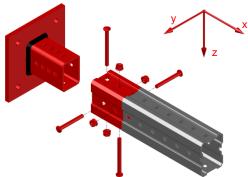


Loading case: Standard Combinations covered by loading case Bill of Material for this loading case: Baseplate connector used for a perpendicular connection of Angle incl. all components an MI-90 girder to concrete 1x MIC-C120-DH 2174662



Validity:

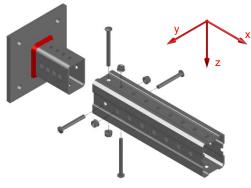
- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. Connection system, including connector, hardware and affected portion of MI-120 girder, per FEA simulation

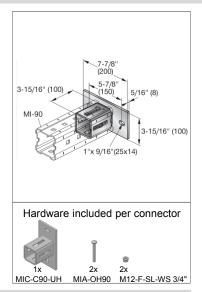
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
104.00	118.82	53.80	53.80	63.50	63.50
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.39	5.39	4.73	4.73	3.00	

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
316.42	316.42	81.16	81.16	100.68	100.68
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.16	9.16	5.18	5.18	6.04	6.04

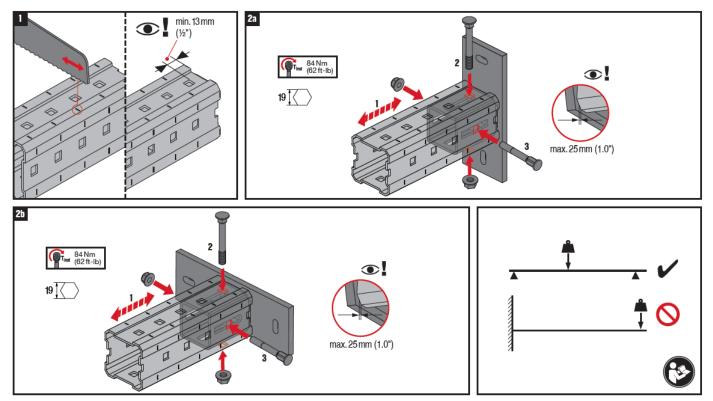
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

DesignationItem numberMIC-C90-UH2179535


Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Connector, Plate	ISO 1461	55
Bolt; Nut	ISO 1461	40; 45

Weight:

2450 g incl. components


Description:

Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-90 girder to concrete. Two oblong anchor holes enable fine tuning of baseplate position, and girder is connected using bolts through fixed holes.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{\scriptscriptstyle N}{mm^2}$	$f_{\rm u} = 800 \frac{\scriptscriptstyle N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modul	us are according to EN 1993-	1-1 and used for all Eurocod	e calculations	

Instruction For Use:

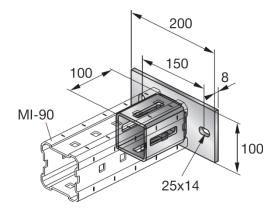
Possible loadi	ng cases	
Standard		

Design criteria used for loading capacity

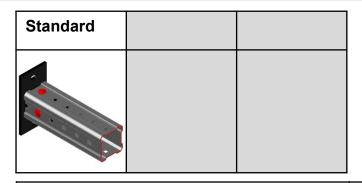
Methodology:

Analytic calculation

Standards and codes:


•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

Software:


- Mathcad 15.0
- Microsoft Excel

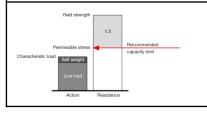
Validity:

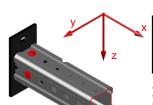
- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Loading case: Standard

Bill of Material for this loading case:

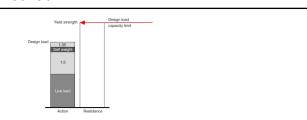
Angle incl. all components 1x MIC-C90-UH


Combinations covered by loading case

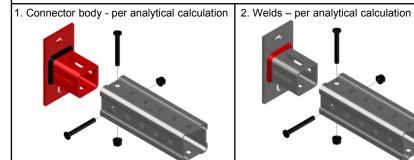

Baseplate connector used for a perpendicular connection of an MI-90 girder to concrete

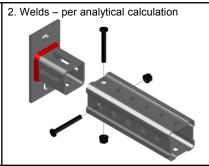
Recommended loading capacity - simplified for most common applications

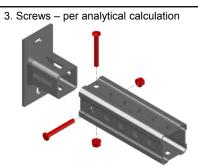
Method


±Fx,rec.	±Fy,rec.	±Fz,rec.
[kN]	[kN]	[kN]
1.50	16.66	16.66

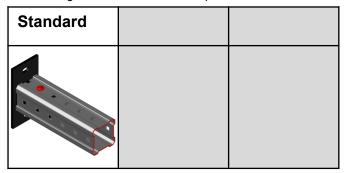
These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.


Design loading capacity - 3D


1/3


Method

Limiting components of capacity evaluated in following tables:



Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

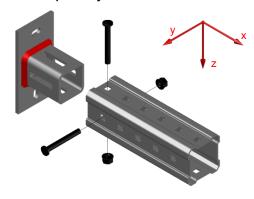
Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connector body - per analytical calculation

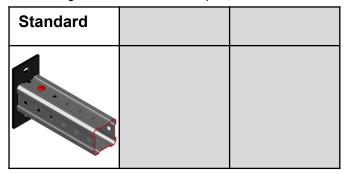


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
13.19	93.32	25.00	25.00	25.00	25.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.10	4.10	0.00	0.00	0.00	0.00

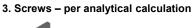
Interaction:

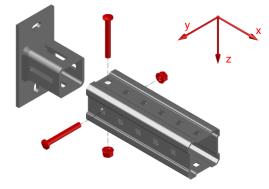
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

2. Welds - per analytical calculation


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.99	5.99	0.00	0.00	0.00	0.00

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$


Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

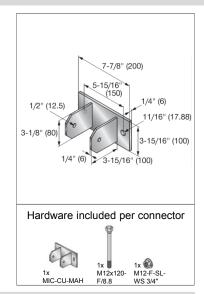
Design loading capacity - 3D

3/3

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
2.25	2.25	36.29	36.29	36.29	36.29
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.20	1.20	0.00	0.00	0.00	0.00

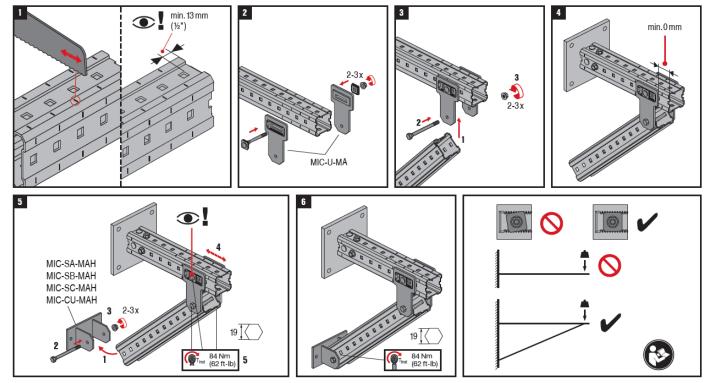
$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

Designation Item number MIC-CU-MAH 2174664


Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Connector, Plate	ISO 1461	55
Bolt; Nut	ISO 1461	40; 45

Weight:

2261 g incl. components


Description:

Hilti Hot-dipped galvanized baseplate connector, used for anchoring a MI-90 girder to concrete in an angle, usually when it's used as a brace for another girder. Two round anchor holes in baseplate for attachment to concrete, and girder is connected using one bolt through a hole, which enables various angles.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_{\rm u} = 800 \frac{\scriptscriptstyle N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modul	us are according to EN 1993-	1-1 and used for all Eurocod	e calculations	

Instruction For Use:

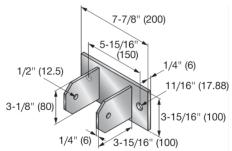
Possible loading cases			
Standard			

Design criteria used for loading capacity

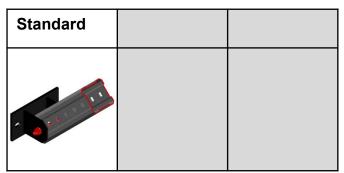
Methodology:

- Finite element analysis
- Analytic calculation

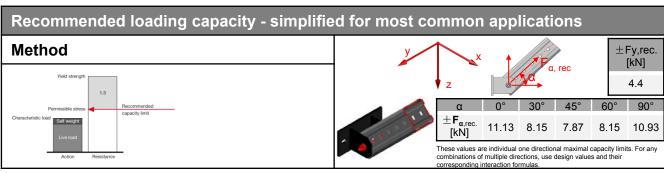
Standards and codes:

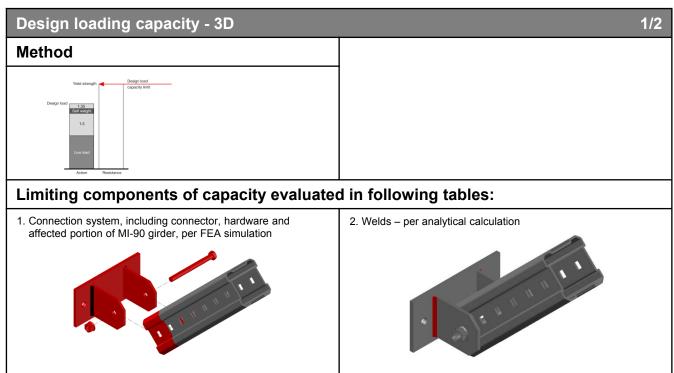

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:


- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

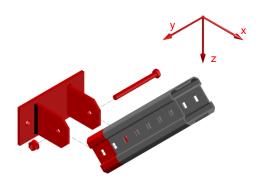


Loading case: Standard	Combinations covered by loading case	
Bill of Material for this loading case: Angle incl. all components 1x MIC-CU-MAH 2174664	Baseplate connector used for an angled connection of an MI-90 girder to concrete (bracing)	

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Standard	

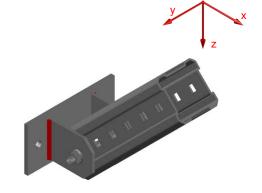

Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
16.70	16.70	6.60	6.60	16.70	16.70
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.70	0.70	0.00	0.00	0.00	0.00

Interaction:

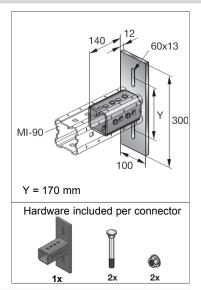
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Welds - per analytical calculation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
325.83	325.83	11.97	11.97	47.45	47.45
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
2.30	2.30	0.00	0.00	15.80	15.80

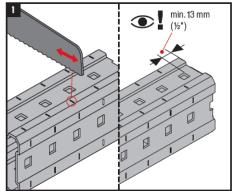
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

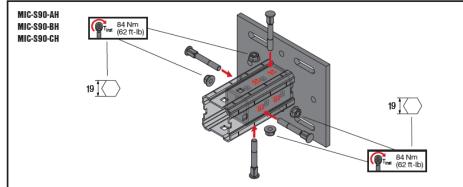
Item number Designation MIC-S90-AA 304811

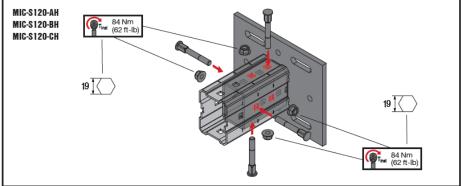

Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Connector, Plate	ISO 1461	55
Bolt; Nut	ISO 1461	40; 45

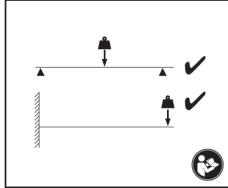
Weight:

4370 g incl. components


Submittal text:


Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-90 girder to a steel beam. Two oblong anchor holes in perpendicular positions enable fine tuning of baseplate position, and girder is connected using bolts through fixed holes.




Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2) Values for Modulus of Electicity and Shear Modulus	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Instruction For Use:

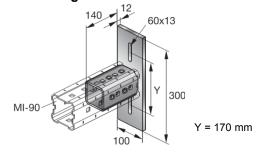
Possible loadi	Possible loading cases					
Standard						

Design criteria used for loading capacity

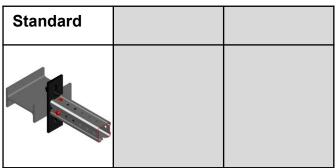
Methodology:

- Finite element analysis
- Analytic calculation

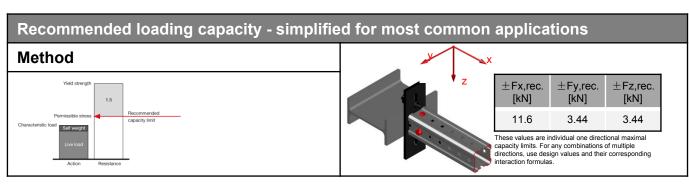
Standards and codes:

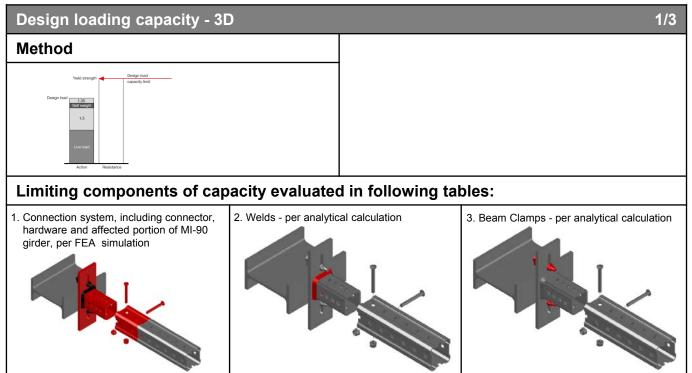

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008
	1 11	

Software:

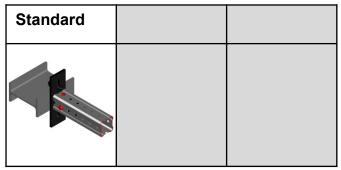

- **Ansys 16.0**
- Microsoft Excel
- Mathcad 15

Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

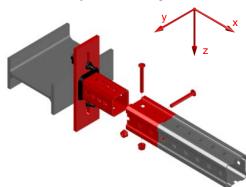


Loading case: Standard Combinations covered by loading case Bill of Material for this loading case: Connector used for a perpendicular connection Connector incl. all associated of MI-90 girder to flange components 1x MIC-S90-AA 304811 of structural steel profiles. Beam clamps For flange width 75-165mm. 2x MI-SGC M12 233859



Validity:

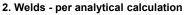
- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

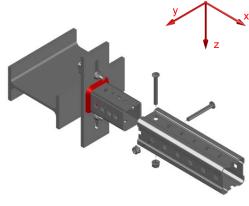

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
24.40	63.30	31.60	31.60	31.60	31.60
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.85	2.85	1.81	1.81	1.00	1.00

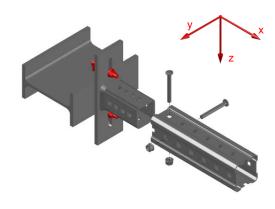
Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
230.12	230.12	49.13	49.13	49.13	49.13
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.64	5.64	3.45	3.45	3.45	3.45

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Standard	

Design loading capacity - 3D

3/3

3. Beam Clamps - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
17.40	Not decisive	5.16	5.16	5.16	5.16
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.32	0.32	0.90	0.90	0.78	0.78

Interaction:

Normal force interaction:

The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the

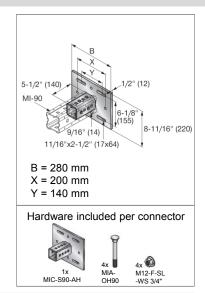
$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{vEd}*ey}{\dot{M}_{zRd}} + \frac{F_{zEd}*ez}{\dot{M}_{yRd}} + \frac{M_{vEd}}{M_{vRd}^{'}} + \frac{M_{zEd}}{M_{zRd}^{'}} \leq 1$$

Shear force interaction:

- Shear Interaction Equation is only valid for TENSILE $F_{x, Ed}$ loads $(F_{x, Ed} > 0)$. Equation is not valid for compressive $F_{x, Ed}$ loads ($F_{x, Ed}$ < 0). - For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1}$$

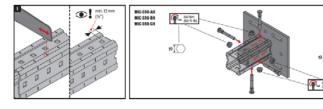
Designation Item number MIC-S90-AH 2174665

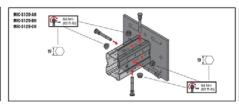

Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Connector, Plate	ISO 1461	55
Bolt; Nut	ISO 1461	40; 45

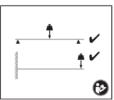
Weight:

7511 g incl. components

Description:

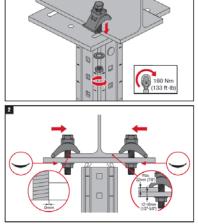

Hilti Hot-dipped galvanized baseplate connector, used for connecting a MI-90 girder to a steel beam using M16 mounting hardware. Four slotted holes enable fine tuning of baseplate position, and girder is connected using beam clamps or threaded rod. Comes in different plate sizes to fit various steel beam sizes.

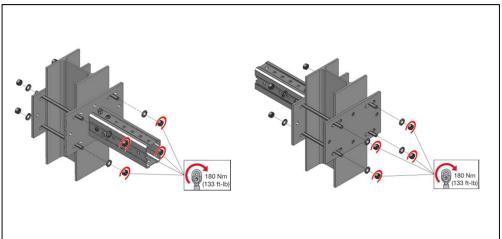



Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modul	us are according to EN 1993	-1-1 and used for all Eurocod	e calculations	

Instruction For Use:

For both loading cases





For clamped loading case

For boxed loading case (not attached to the packaging)

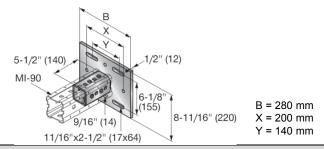
Possible loading cases			
Clamped	Boxed		

Design criteria used for loading capacity

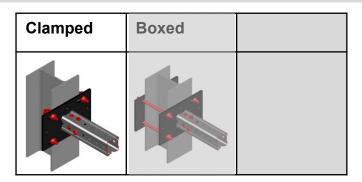
Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:


EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008
	1 11	

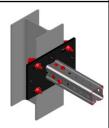
Software:


- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

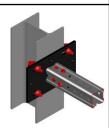
- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Loading case: Clamped

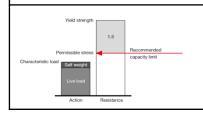

Bill of Material for this loading case:

Connector incl. all associated components

1x MIC-S90-AH


Beam clamps 4x MI-SGC M16 2174665

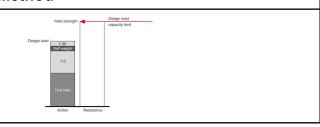
387398


Combinations covered by loading case

Connector used for a perpendicular connection of MI-90 girder to flange of structural steel profiles. For flange width 75-165mm.

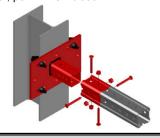
Recommended loading capacity - simplified for most common applications

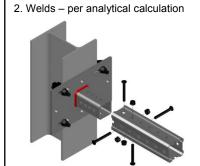
Method

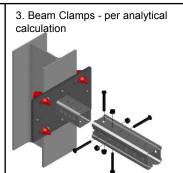

(±Fx,rec. [kN]	±Fy,rec. [kN]	±Fz,rec. [kN]
	36.53	6.87	6.87

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

Design loading capacity - 3D

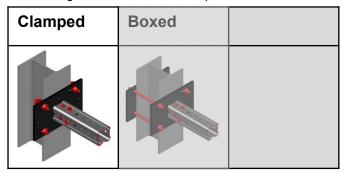

1/3


Method



Limiting components of capacity evaluated in following tables:

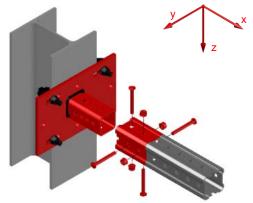
1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation



Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

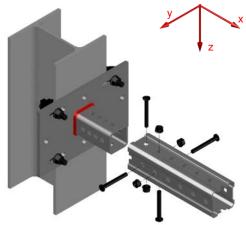

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

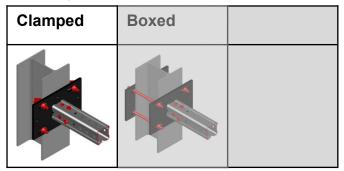


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
54.80	118.82	45.40	45.40	45.40	45.40
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.60	3.60	3.00	3.00	3.00	

Interaction:

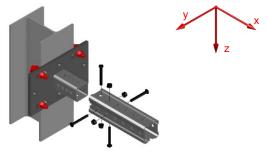
$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

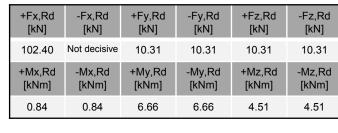
2. Welds - per analytical calculation


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
230.12	230.12	49.31	49.31	49.31	49.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.64	5.64	3.45	3.45	3.45	3.45

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{xRd}} + \frac{F_{zEd}}{F_{zRd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{yEd}}{M_{xRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.



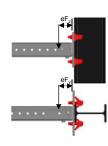
Design loading capacity - 3D

3/3

3. Beam Clamps - per analytical calculation

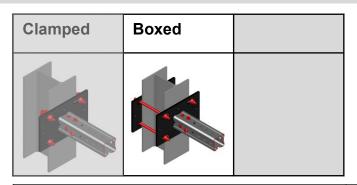
Interaction:

Normal force interaction:


The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{F_{xEd}}{F_{xRd}^{'}} + \frac{F_{yEd}*ey}{\dot{M}_{zRd}^{'}} + \frac{F_{zEd}*ez}{\dot{M}_{yRd}^{'}} + \frac{M_{yEd}}{M_{yRd}^{'}} + \frac{M_{zEd}}{M_{zRd}^{'}} \leq 1$$

Shear force interaction:


- Shear Interaction Equation is $\underline{\text{only}}$ valid for TENSILE $F_{x,Ed}$ loads $(F_{x,Ed} > 0)$. Equation is $\underline{\text{not}}$ valid for compressive $F_{x, Ed}$ loads $(F_{x, Ed} < 0)$. - For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1}$$

with $e_v = e_z = 0.070$ m

Loading case: Boxed

Bill of Material for this loading case:

Connector incl. all associated

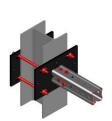
components

2174665 1x MIC-S90-AH

Base plate

1x MIB-SAH 2174674

Threaded rods cut to particular length


4x AM16x1000 8.8 HDG...m 419104

Lock washer

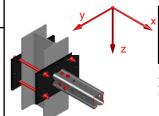
8x LW M16 HDG plus washer 2185343

Nut

8x M16-F nut 304767

Connector used for a perpendicular connection of MI-90 girder to flange


Combinations covered by loading case


of structural steel profiles. For flange width 75-165mm.

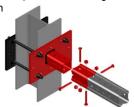
Recommended loading capacity - simplified for most common applications

Method

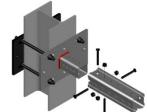
±Fx,rec.	±Fy,rec.	±Fz,rec.
[kN]	[kN]	[kN]
38.47	13.77	

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

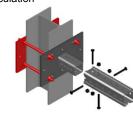
Design loading capacity - 3D


1/3

Method

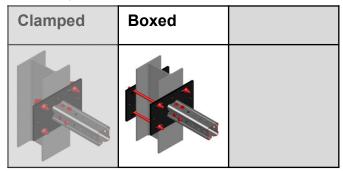


Limiting components of capacity evaluated in following tables:


1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

2. Welds - per analytical calculation

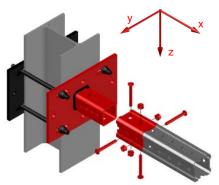
3. Base plate and through bolts - per analytical calculation



Installation Technical Manual - Technical Data - MI system

Validity:

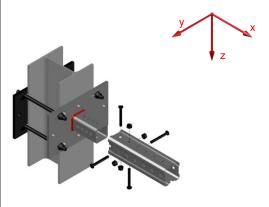
- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/3

Summary of design loads*

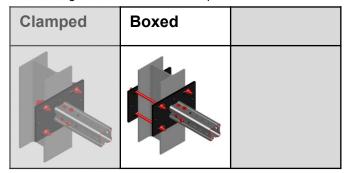
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
57.70	118.82	45.40	45.40	45.40	45.40
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.60	3.60	3.00	3.00	3.00	

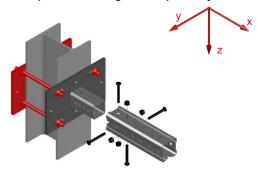
$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{yRd}} + \frac{F_{zEd}}{F_{zRd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \leq 1$$

2. Welds - per analytical calculation


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
230.12	230.12	49.31	49.31	49.31	49.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.64	5.64	3.45	3.45	3.45	3.45

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{yRd}} + \frac{F_{zEd}}{F_{zRd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

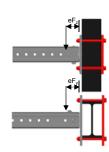
3/3

3. Base plate and through bolts - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
164.00	Not decisive	20.66	20.66	20.66	20.66
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.67	1.67	8.61	8.61	7.22	7.22

Interaction:

Normal force interaction:


The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula

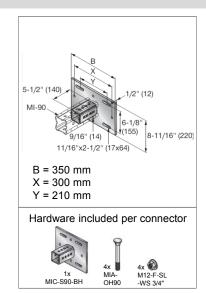
$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd} * ey}{M_{zRd}} + \frac{F_{zEd} * ez}{M_{yRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is not valid for compressive $F_{x, Ed}$ loads ($F_{x, Ed} < 0$). - For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\left| \left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \le 1 \right|$$

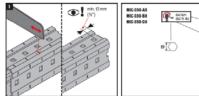
Designation Item number MIC-S90-BH 2174666

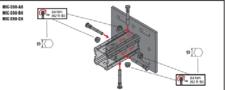

Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Connector, Plate	ISO 1461	55
Bolt; Nut	ISO 1461	40; 45

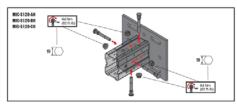
Weight:

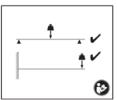
8964 g incl. components

Description:

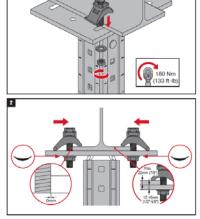

Hilti Hot-dipped galvanized baseplate connector, used for connecting a MI-90 girder to a steel beam using M16 mounting hardware. Four slotted holes enable fine tuning of baseplate position, and girder is connected using beam clamps or threaded rod. Comes in different plate sizes to fit various steel beam sizes.

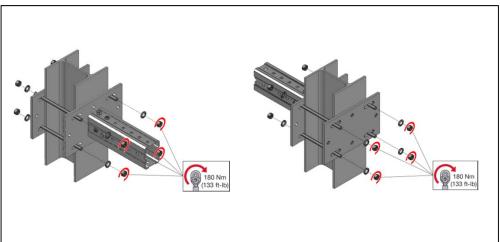



Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations				


Instruction For Use:

For both loading cases





For clamped loading case

For boxed loading case (not attached to the packaging)

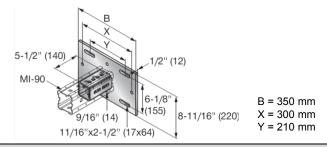
Possible loading cases				
Clamped	Boxed			

Design criteria used for loading capacity

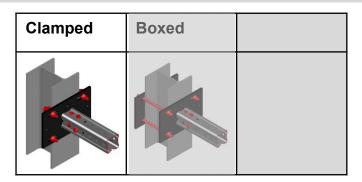
Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

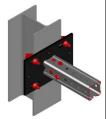

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008
	, ,,	

Software:


- Ansys 16.0
- Microsoft Excel
- Mathcad 15

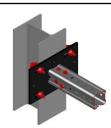
Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

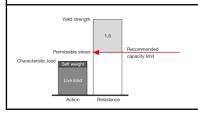

Loading case: Clamped

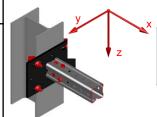
Bill of Material for this loading case:

Connector incl. all associated components


1x MIC-S90-BH

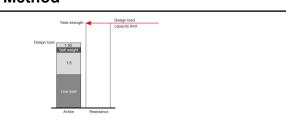
Beam clamps 4x MI-SGC M16 2174666 387398


Combinations covered by loading case


Connector used for a perpendicular connection of MI-90 girder to flange of structural steel profiles. For flange width 165-235mm.

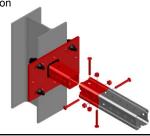
Recommended loading capacity - simplified for most common applications

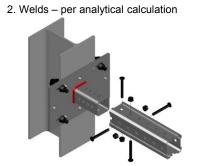
Method


±Fx,rec.	±Fy,rec.	±Fz,rec.	
[kN]	[kN]	[kN]	
26.73	6.87	6.87	

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas

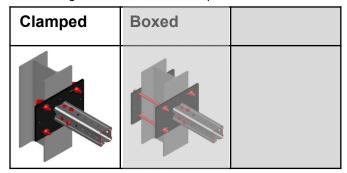
Design loading capacity - 3D


1/3


Method

Limiting components of capacity evaluated in following tables:

1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation


3. Beam Clamps - per analytical calculation

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

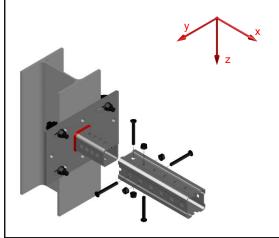

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

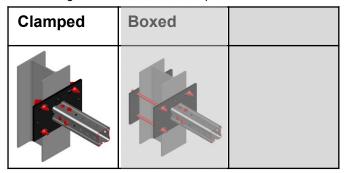


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
40.10	118.82	45.40	45.40	45.40	45.40
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.60	3.60	3.00	3.00	3.00	3.00

Interaction:

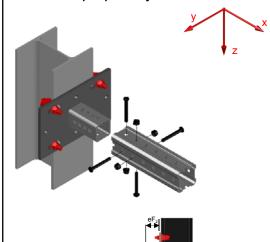
$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Welds - per analytical calculation


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
230.12	230.12	49.31	49.31	49.31	49.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.64	5.64	3.45	3.45	3.45	3.45

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3/3

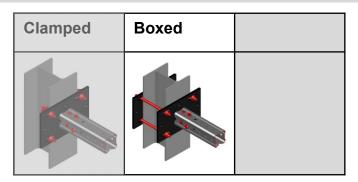
eF ₂	
eF _V	

with $e_v = e_z = 0.070 \text{ m}$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.12	1.12	6.66	6.66	6.66	6.66

Interaction:

Normal force interaction:


The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{F_{xEd}}{F_{xRd}^{'}} + \frac{F_{vEd} * ey}{M_{zRd}} + \frac{F_{zEd} * ez}{M_{yRd}} + \frac{M_{vEd}}{M_{yRd}^{'}} + \frac{M_{zEd}}{M_{zRd}^{'}} \le 1$$

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is <u>not</u> valid for compressive $F_{x, Ed}$ loads $(F_{x, Ed} < 0)$. - For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\left| \left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \le 1 \right|$$

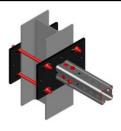
Loading case: Boxed

Bill of Material for this loading case:

1x MIC-S90-B н Hardware not included in packaging:

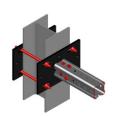
Base plate

1x MIB-SBH 2174675

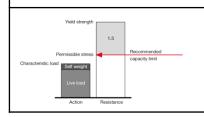

Threaded rods cut to particular length 4x AM16x1000 8.8 HDG...m 419104

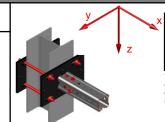
Lock washer

8x LW M16 HDG plus washer 2185343


Nut

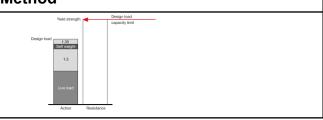
8x M16-F nut 304767


Combinations covered by loading case


Connector used for a perpendicular connection of MI-90 girder to flange of structural steel profiles. For flange width 165-235mm.

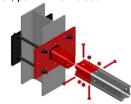
Recommended loading capacity - simplified for most common applications

Method

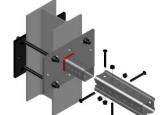

±Fx,rec.	±Fy,rec.	±Fz,rec.
[kN]	[kN]	[kN]
26.73	13.34	13.34

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

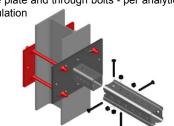
Design loading capacity - 3D


1/3

Method

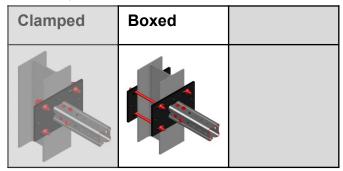


Limiting components of capacity evaluated in following tables:


1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

2. Welds - per analytical calculation

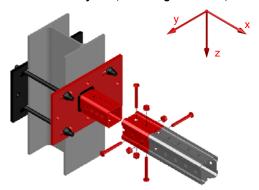
3. Base plate and through bolts - per analytical calculation



Installation Technical Manual - Technical Data - MI system

Validity:

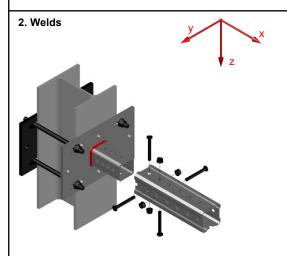
- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/3

Summary of design loads*

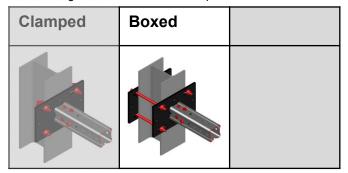
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
40.10	80.50	45.40	45.40	45.40	45.40
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.60	3.60	3.00	3.00	3.00	3.00

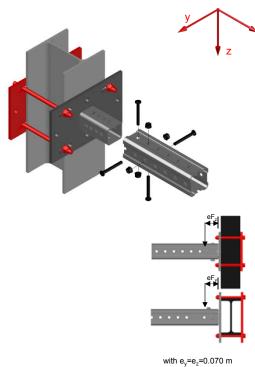
Interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{yRd}} + \frac{F_{zEd}}{F_{zRd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \leq 1$$


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
230.12	230.12	49.31	49.31	49.31	49.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.64	5.64	3.45	3.45	3.45	3.45

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{yRd}} + \frac{F_{zEd}}{F_{zRd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3/3

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
158.80	Not decisive	20.01	20.01	20.01	20.01
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.06	2.06	8.81	8.81	9.77	9.77

Interaction:

Normal force interaction:

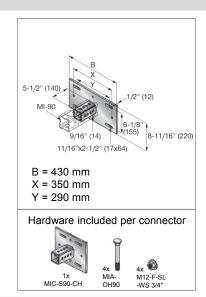
The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the

$$\frac{F_{xEd}}{F_{xRd}^{'}} + \frac{F_{yEd}*ey}{\dot{M}_{zRd}} + \frac{F_{zEd}*ez}{\dot{M}_{yRd}} + \frac{M_{yEd}}{M_{yRd}^{'}} + \frac{M_{zEd}}{M_{zRd}^{'}} \leq 1$$

- Shear Interaction Equation is only valid for TENSILE $F_{x, Ed}$ loads $(F_{x, Ed} > 0)$. Equation is <u>not</u> valid for compressive $F_{x, Ed}$ loads $(F_{x, Ed} < 0)$. - For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\left| \left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{'}} \right)} \right)^{2} + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{'}} \right)} \right)^{2} + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{'}} \right)} \le 1 \right|$$

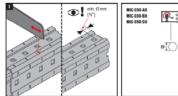
Designation Item number MIC-S90-CH 2174667

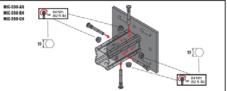

Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Connector, Plate	ISO 1461	55
Bolt; Nut	ISO 1461	40; 45

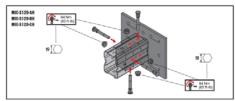
Weight:

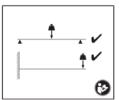
10624 g incl. components

Description:

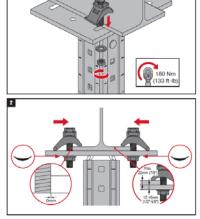

Hilti Hot-dipped galvanized baseplate connector, used for connecting a MI-90 girder to a steel beam using M16 mounting hardware. Four slotted holes enable fine tuning of baseplate position, and girder is connected using beam clamps or threaded rod. Comes in different plate sizes to fit various steel beam sizes.

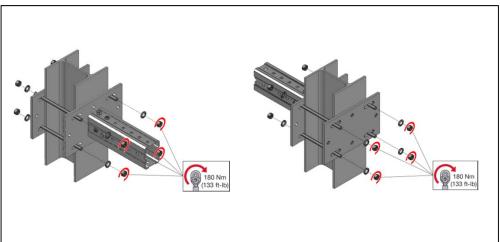



Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modul	us are according to EN 1993	-1-1 and used for all Eurocod	e calculations	


Instruction For Use:

For both loading cases





For clamped loading case

For boxed loading case (not attached to the packaging)

Possible loading cases					
Clamped Boxed					

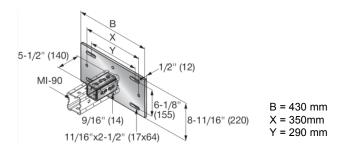
Design criteria used for loading capacity

Methodology:

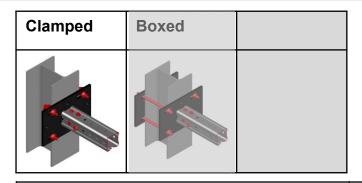
- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008
	1 11	

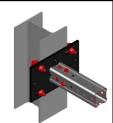

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15


Validity:

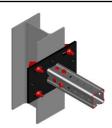
- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Simplified drawing:

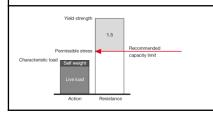


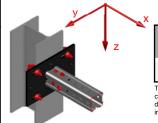
Loading case: Clamped

Bill of Material for this loading case:


1x MIC-S90-CH Hardware not included in packaging: Beam clamps

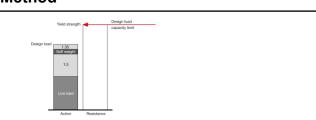
4x MI-SGC M16 387398


Combinations covered by loading case


Connector used for a perpendicular connection of MI-90 girder to flange of structural steel profiles. For flange width 235-300mm.

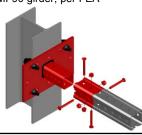
Recommended loading capacity - simplified for most common applications

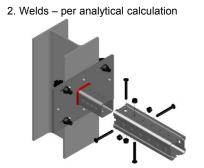
Method

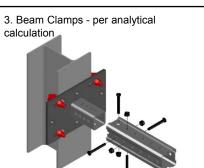

\pm Fx,rec.	±Fy,rec.	±Fz,rec.
[kN]	[kN]	[kN]
17.93	6.87	6.87

These values are individual one directional maximal rhese values are individual on the directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

Design loading capacity - 3D

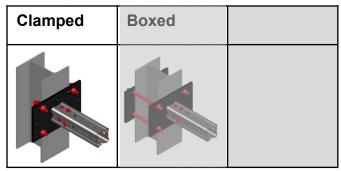

1/3


Method



Limiting components of capacity evaluated in following tables:

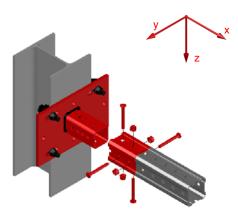
1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation



Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

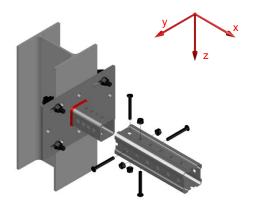

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

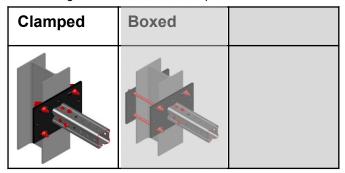


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.90	118.82	45.40	45.40	45.40	45.40
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.60	3.60	3.00	3.00	3.00	3.00

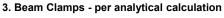
Interaction:

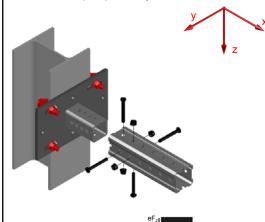
$$\frac{F_{x:Ed}}{F_{x:Rd}} + \frac{F_{y:Ed}}{F_{y:Rd}} + \frac{F_{z:Ed}}{F_{z:Rd}} + \frac{M_{x:Ed}}{M_{x:Rd}} + \frac{M_{y:Ed}}{M_{y:Rd}} + \frac{M_{z:Ed}}{M_{z:Rd}} \leq 1$$

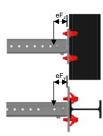
2. Welds - per analytical calculation


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
230.12	230.12	49.31	49.31	49.31	49.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.64	5.64	3.45	3.45	3.45	3.45

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{v.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{v.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$


Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.



Design loading capacity - 3D

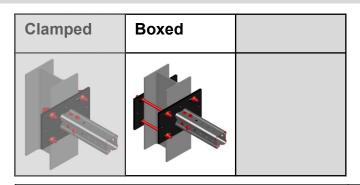
3/3

with $e_v = e_z = 0.070 \text{ m}$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.41	1.41	6.66	6.66	8.45	8.45

Interaction:

Normal force interaction:


The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{vEd}*ey}{\dot{M}_{zRd}} + \frac{F_{zEd}*ez}{\dot{M}_{yRd}} + \frac{M_{vEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

- Shear Interaction Equation is \underline{only} valid for TENSILE $F_{x,\,Ed}$ loads ($F_{x,\,Ed} > 0$). Equation is \underline{not} valid for compressive $F_{x, Ed}$ loads ($F_{x, Ed}$ < 0). - For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd}$ < 1.

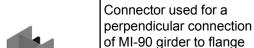
$$\left| \left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{\top}} \right)} \right)^{2} + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{\top}} \right)} \right)^{2} + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{\top}} \right)} \le 1 \right|$$

Loading case: Boxed

Bill of Material for this loading case:

1x MIC-S90-CH Hardware not included in packaging:

Base plate

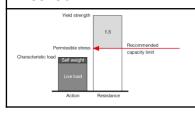

1x MIB-SCH 2174676 Threaded rods cut to particular length

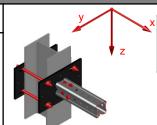
4x AM16x1000 8.8 HDG...m 419104 Lock washer

8x LW M16 HDG plus washer 2185343

Nut

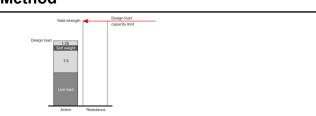
8x M16-F nut 304767


For flange width 235-300mm.


Combinations covered by loading case

Recommended loading capacity - simplified for most common applications

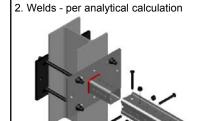
Method

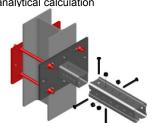


±Fx,rec.	±Fy,rec.	±Fz,rec.
[kN]	[kN]	[kN]
17.00	12.67	12.67

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

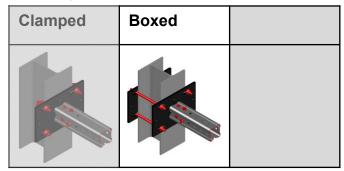
Design loading capacity - 3D


Method


Limiting components of capacity evaluated in following tables:

1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

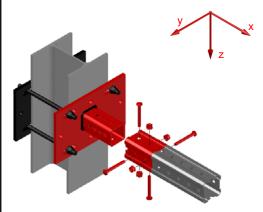
Base plate and through bolts - per analytical calculation


Installation Technical Manual - Technical Data - MI system

1/3

Validity:

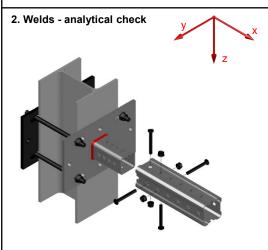
- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

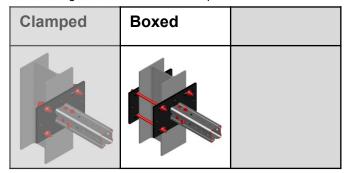

1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
25.50	52.30	45.40	45.40	45.40	45.40
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.60	3.60	3.00	3.00	3.00	3.00

Interaction:

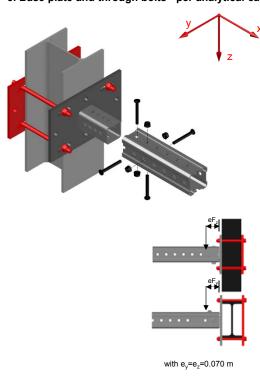
$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{yRd}} + \frac{F_{zEd}}{F_{zRd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
230.12	230.12	49.31	49.31	49.31	49.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.64	5.64	3.45	3.45	3.45	3.45


Interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le$$

Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3/3

3. Base plate and through bolts - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
150.80	Not decisive	19.00	19.00	19.00	19.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.57	2.57	8.82	8.82	12.29	12.29

Interaction:

Normal force interaction:

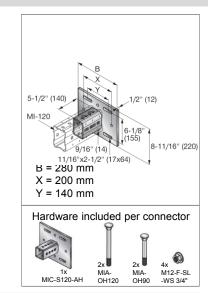
The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the

$$\frac{F_{xEd}}{F_{xRd}^{'}} + \frac{F_{yEd}*ey}{\dot{M}_{zRd}} + \frac{F_{zEd}*ez}{\dot{M}_{yRd}} + \frac{M_{yEd}}{M_{yRd}^{'}} + \frac{M_{zEd}}{M_{zRd}^{'}} \leq 1$$

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is <u>not</u> valid for compressive $F_{x, Ed}$ loads ($F_{x, Ed} < 0$). For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{\top}}\right)}\right)^{2} + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{\top}}\right)}\right)^{2} + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{\top}}\right)} \le 1$$

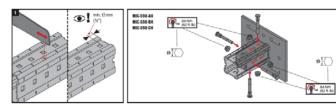
Designation Item number MIC-S120-AH 2174668

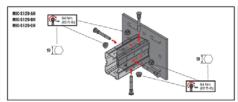

Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Connector, Plate	ISO 1461	55
Bolt; Nut	ISO 1461	40; 45

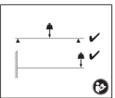
Weight:

7911 g incl. components

Description:

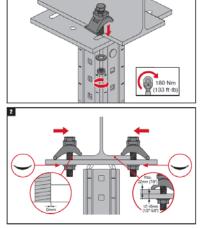

Hilti Hot-dipped galvanized baseplate connector, used for connecting a MI-120 girder to a steel beam using M16 mounting hardware. Four slotted holes enable fine tuning of baseplate position, and girder is connected using beam clamps or threaded rod. Comes in different plate sizes to fit various steel beam sizes.

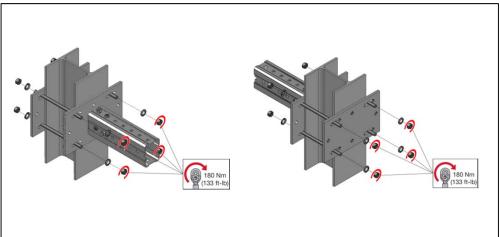


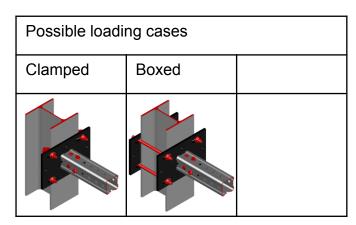

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Values for Modulus of Élasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations				

Instruction For Use:

For both loading cases:






For clamped loading case

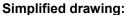
For boxed loading case (not attached to the packaging)

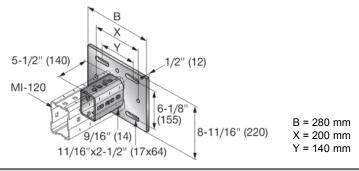
Design criteria used for loading capacity

Methodology:

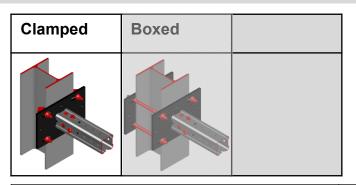
- Finite element analysis
- Analytic calculation

Standards and codes:

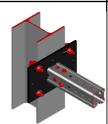

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008
	1 11	


Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

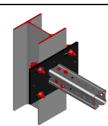

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Loading case: Clamped

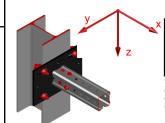
Bill of Material for this loading case:

1x MIC-S120-AH 2174668 Hardware not included in packaging:


Beam clamps 4x MI-SGC M16

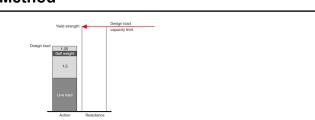
387398

Combinations covered by loading case


Connector used for a perpendicular connection of MI-120 girder to flange of structural steel profiles. For flange width 75-165mm.

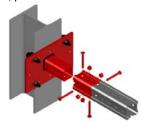
Recommended loading capacity - simplified for most common applications

Method

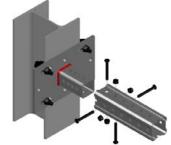

±Fx,rec.	±Fy,rec.	±Fz,rec.
[kN]	[kN]	[kN]
37.87	6.87	6.87

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas

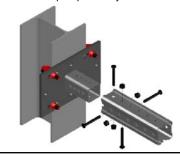
Design loading capacity - 3D

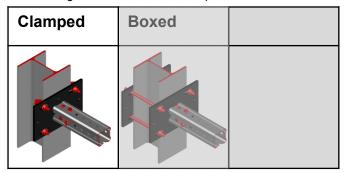

1/3

Method



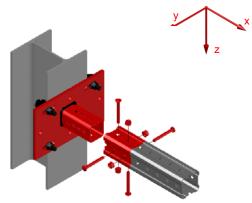
Limiting components of capacity evaluated in following tables:


1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation


3. Beam Clamps - per analytical calculation

Validity:

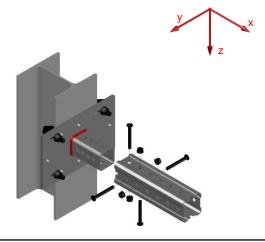
- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/3

Summary of design loads*

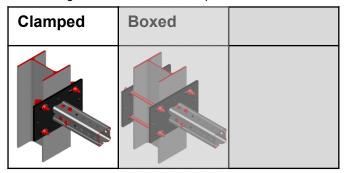
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation

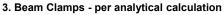
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
56.80	118.82	53.80	53.80	63.50	63.50
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.39	5.39	4.73	4.73	3.00	

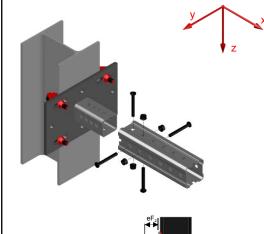
$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

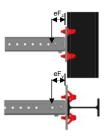
2. Welds - per analytical calculation


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
316.42	316.42	81.16	81.16	100.68	100.68
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.16	9.16	5.18	5.18	6.04	6.04

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.



Design loading capacity - 3D

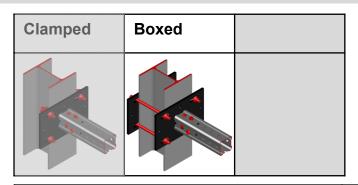
3/3

with $e_v = e_z = 0.070 \text{ m}$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.84	0.84	7.48	7.48	4.51	4.51

Interaction:

Normal force interaction:


The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{F_{xEd}}{F_{xRd}^{'}} + \frac{F_{yEd}^{*}ey}{\dot{M}_{zRd}} + \frac{F_{zEd}^{*}ez}{\dot{M}_{yRd}} + \frac{M_{yEd}}{M_{yRd}^{'}} + \frac{M_{zEd}}{M_{zRd}^{'}} \le 1$$

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is <u>not</u> valid for
- compressive $F_{x, Ed}$ loads $(F_{x, Ed} < 0)$. For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{'}}\right)}\right)^{2} + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{'}}\right)}\right)^{2}} + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{'}}\right)} \le 1$$

Loading case: Boxed

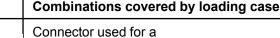
Bill of Material for this loading case:

1x MIC-S120-AH 2174668

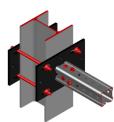
Hardware not included in packaging:

Base plate

1x MIB-SAH 2174674 Threaded rods cut to particular length

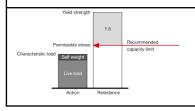

4x AM16x1000 8.8 HDG...m 419104

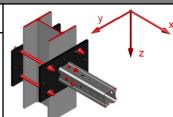
Lock washer


8x LW M16 HDG plus washer 2185343

Nut

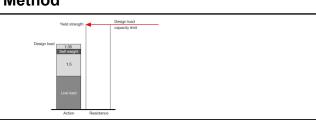
8x M16-F nut 304767




perpendicular connection of MI-120 girder to flange of structural steel profiles. For flange width 75-165mm.

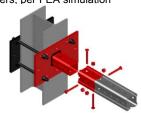
Recommended loading capacity - simplified for most common applications

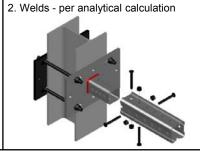
Method


X	±Fx,rec. [kN]	±Fy,rec. [kN]	±Fz,rec. [kN]
	39.00	13.77	13.77

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding

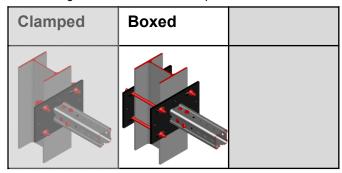
1/3


Design loading capacity - 3D


Method

Limiting components of capacity evaluated in following tables:

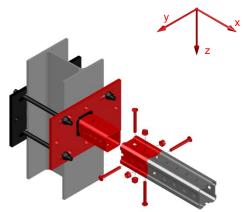
1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation



3. Base plate and through bolts - per analytical calculation

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

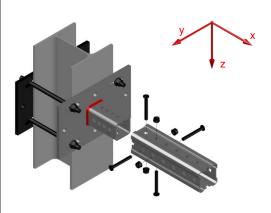

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation

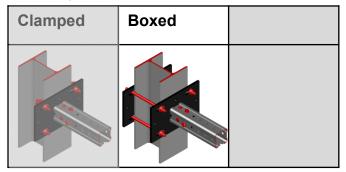


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
58.50	118.82	53.80	53.80	63.50	63.50
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.39	5.39	4.73	4.73	3.00	3.00

Interaction:

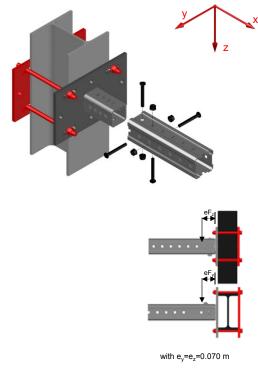
$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{yRd}} + \frac{F_{zEd}}{F_{zRd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \leq 1$$

2. Welds - per analytical calculation


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
316.42	316.42	81.16	81.16	100.68	100.68
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.16	9.16	5.18	5.18	6.04	6.04

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3/3

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
164.00	Not decisive	20.66	20.66	20.66	20.66
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.67	1.67	10.99	10.99	7.22	7.22

Interaction:

Normal force interaction:

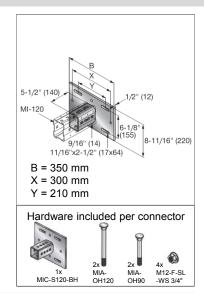
The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the interaction formula.

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}*ey}{M_{zRd}} + \frac{F_{zEd}*ez}{M_{yRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is <u>not</u> valid for compressive $F_{x, Ed}$ loads ($F_{x, Ed} < 0$). For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\left| \left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \le 1 \right|$$

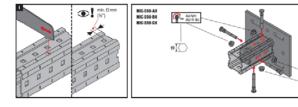
Designation Item number MIC-S120-BH 2174669

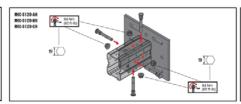

Corrosion protection:						
Material	HDG per	Zinc thickness, min. (µm)				
Connector, Plate	ISO 1461	55				
Bolt; Nut	ISO 1461	40; 45				

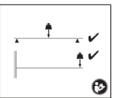
Weight:

9364 g incl. components

Description:

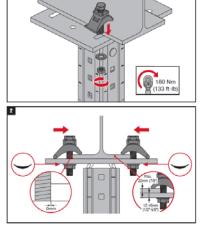

Hilti Hot-dipped galvanized baseplate connector, used for connecting a MI-120 girder to a steel beam using M16 mounting hardware. Four slotted holes enable fine tuning of baseplate position, and girder is connected using beam clamps or threaded rod. Comes in different plate sizes to fit various steel beam sizes.

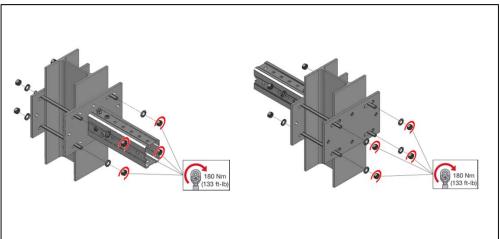



Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modul	us are according to EN 1993	-1-1 and used for all Eurocod	e calculations	

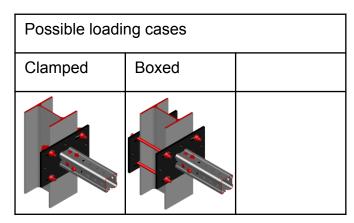
Instruction For Use:

For both loading cases:





For clamped loading case


For boxed loading case (not attached to the packaging)

84 Nm (62 ft (b)

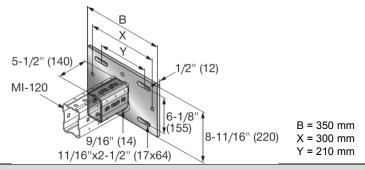
Design criteria used for loading capacity

Methodology:

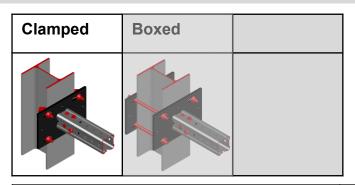
- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008
	1 11	

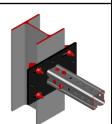

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15


Validity:

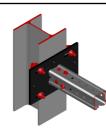
- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Simplified drawing:

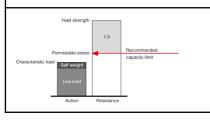

Loading case: Clamped

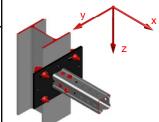
Bill of Material for this loading case:

1x MIC-S120-BH 2174669 Hardware not included in packaging:


Beam clamps

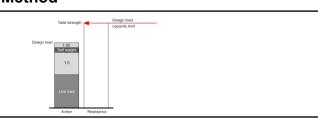
4x MI-SGC M16 387398


Combinations covered by loading case


Connector used for a perpendicular connection of MI-120 girder to flange of structural steel profiles. For flange width 165-235mm.

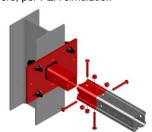
Recommended loading capacity - simplified for most common applications

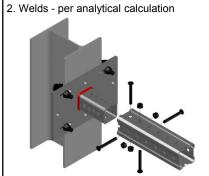
Method

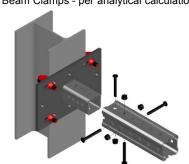

±Fx,rec.	±Fy,rec.	±Fz,rec.
27.07	6.87	6.87

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas

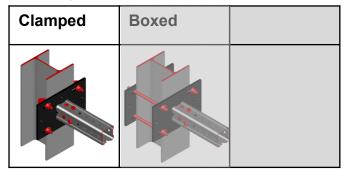
Design loading capacity - 3D


1/3


Method

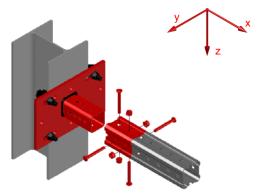

Limiting components of capacity evaluated in following tables:

1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation


3. Beam Clamps - per analytical calculation

Validity:

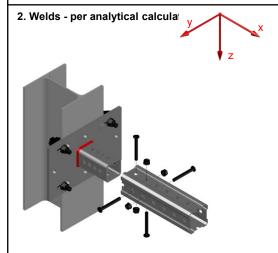
- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/3

Summary of design loads*

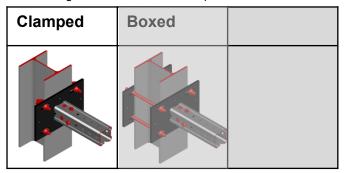
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation

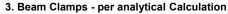
+Fx,R [kN]		x,Rd + :N]	·Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
40.60	118	3.82	53.80	53.80	63.50	63.50
+Mx,R [kNm		,	My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
5.39	5.	39	4.45	4.45	3.00	3.00

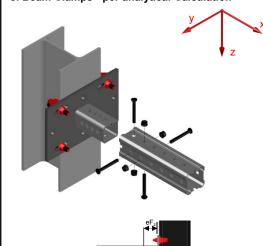
Interaction:

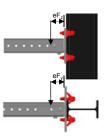
$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
316.42	316.42	81.16	81.16	100.68	100.68
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.16	9.16	5.18	5.18	6.04	6.04

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.



Design loading capacity - 3D

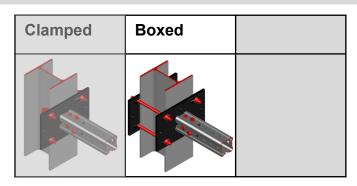
3/3

with $e_y=e_z=0.070$ m

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.12	1.12	7.48	7.48	6.66	6.66

Interaction:

Normal force interaction:


The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{vEd}*ey}{M_{zRd}} + \frac{F_{zEd}*ez}{M_{yRd}} + \frac{M_{vEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \leq 1$$

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is <u>not</u> valid for
- compressive $F_{x,Ed}$ loads ($F_{x,Ed}$ < 0). For Shear interaction, user must ADDITIONALLY verify: $F_{x,Ed}$ / $F_{x,Rd}$ < 1.

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{'}}\right)}\right)^{2} + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{'}}\right)}\right)^{2} + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{'}}\right)} \le 1$$

Loading case: Boxed

Bill of Material for this loading case:

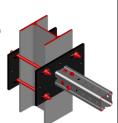
1x MIC-S120-BH

Hardware not included in packaging:

Base plate

1x MIB-SBH 2174675

Threaded rods cut to particular length


4x AM16x1000 8.8 HDG...m 419104

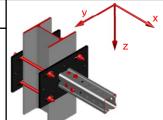
Lock washer

8x LW M16 HDG plus washer 2185343

Nut

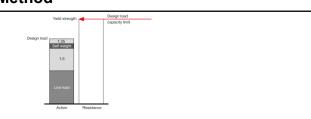
8x M16-F nut 304767

Combinations covered by loading case


Connector used for a perpendicular connection of MI-120 girder to flange of structural steel profiles. For flange width 165-235mm.

Recommended loading capacity - simplified for most common applications

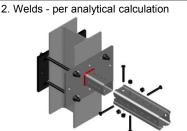
Method


±Fx,rec. [kN]	±Fy,rec. [kN]	±Fz,rec. [kN]
27.07	13.34	13.34

These values are individual one directional maxima capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

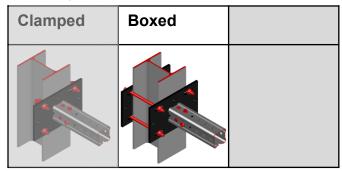
Design loading capacity - 3D

1/3


Method

Limiting components of capacity evaluated in following tables:

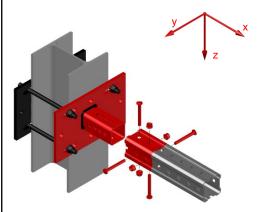
1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation


3. Base plate and through bolts - per analytical calculation

Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

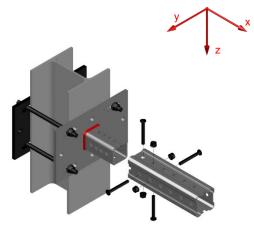

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation



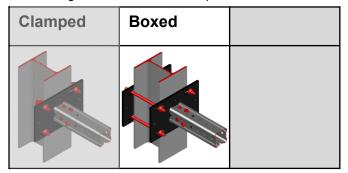
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
40.60	85.90	53.80	53.80	63.50	63.50
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.39	5.39	4.45	4.45	3.00	3.00

Interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{yRd}} + \frac{F_{zEd}}{F_{zRd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \leq 1$$

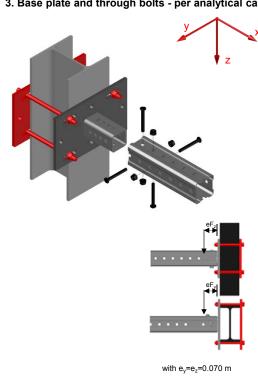
2. Welds - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
316.42	316.42	81.16	81.16	100.68	100.68
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.16	9.16	5.18	5.18	6.04	6.04


Interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3/3

3. Base plate and through bolts - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
158.80	Not decisive	20.01	20.01	20.01	20.01
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.06	2.06	11.20	11.20	9.77	9.77

Interaction:

Normal force interaction:

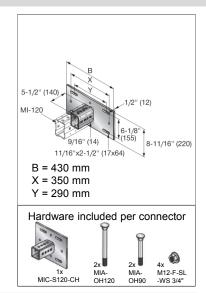
The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the

$$\frac{F_{xEd}}{F_{xRd}^{'}} + \frac{F_{vEd}^{*}ey}{\dot{M}_{zRd}} + \frac{F_{zEd}^{*}ez}{\dot{M}_{yRd}} + \frac{M_{vEd}}{M_{yRd}^{'}} + \frac{M_{zEd}}{M_{zRd}^{'}} \leq 1$$

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is <u>not</u> valid for compressive $F_{x, Ed}$ loads ($F_{x, Ed} < 0$). For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\left| \left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^{2} + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \right)^{2} + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}} \right)} \le 1 \right|$$

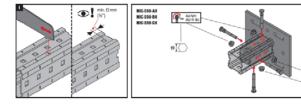
Designation Item number MIC-S120-CH 304820

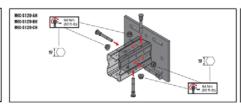

Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Connector, Plate	ISO 1461	55
Bolt; Nut	ISO 1461	40; 45

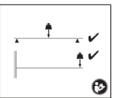
Weight:

11024 g incl. components

Description:

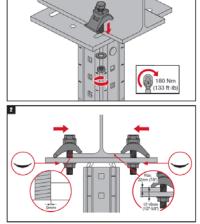

Hilti Hot-dipped galvanized baseplate connector, used for connecting a MI-120 girder to a steel beam using M16 mounting hardware. Four slotted holes enable fine tuning of baseplate position, and girder is connected using beam clamps or threaded rod. Comes in different plate sizes to fit various steel beam sizes.

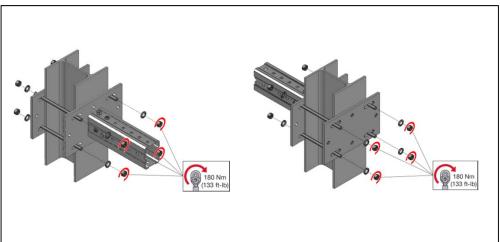



Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Values for Modulus of Élasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations				

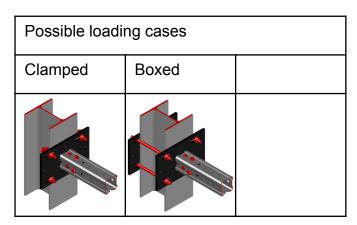
Instruction For Use:

For both loading cases:





For clamped loading case


For boxed loading case (not attached to the packaging)

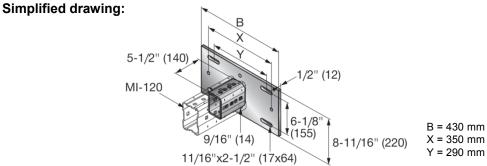
84 Nm (62 ft (b)

Design criteria used for loading capacity

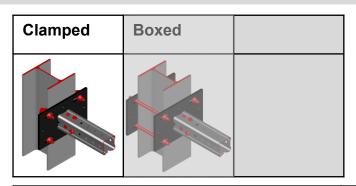
Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

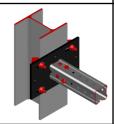

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

Software:


- Ansys 16.0
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

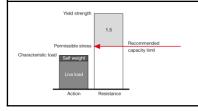

387398

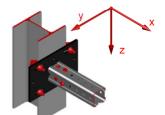
Loading case: Clamped

Bill of Material for this loading case:


1x MIC-S120-CH 2174670 Hardware not included in packaging: Beam clamps

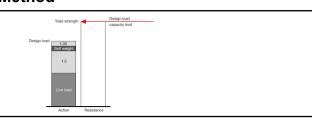
4x MI-SGC M16


Combinations covered by loading case


Connector used for a perpendicular connection of MI-120 girder to flange of structural steel profiles. For flange width 235-300mm.

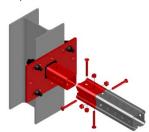
Recommended loading capacity - simplified for most common applications

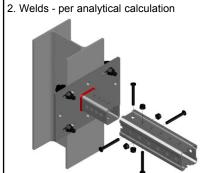
Method

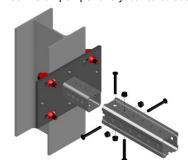

±Fx,rec.	±Fy,rec.	±Fz,rec.
[kN]	[kN]	[kN]
18.67	6.87	6.87

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

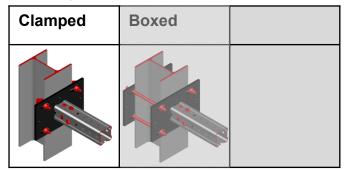
Design loading capacity - 3D


1/3


Method

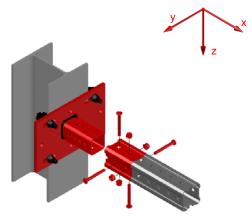

Limiting components of capacity evaluated in following tables:

1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation


3. Beam Clamps - per analytical calculation

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

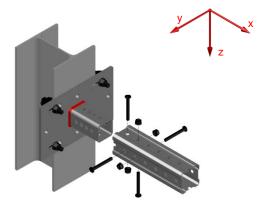

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation

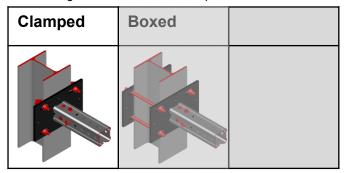


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
28.00	118.82	53.80	53.80	58.10	58.10
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]
5.39	5.39	4.07	4.07	3.00	3.00

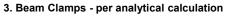
Interaction:

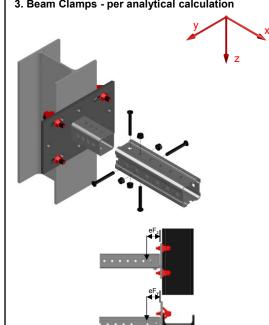
$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{yRd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Welds - per analytical calculation


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
316.42	316.42	81.16	81.16	100.68	100.68
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]
9.16	9.16	5.18	5.18	6.04	6.04

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


Validity:


- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3/3

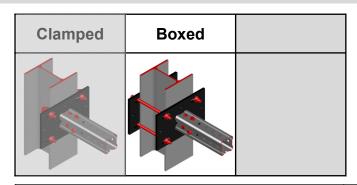
with $e_v = e_z = 0.070 \text{ m}$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.41	1.41	7.37	7.37	8.45	8.45

Interaction:

Normal force interaction:

The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the


$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{vEd} * ey}{M_{zRd}} + \frac{F_{zEd} * ez}{M_{vRd}} + \frac{M_{vEd}}{M_{vRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear Index interaction Equation is only valid for TENSILE
$$F_{x, Ed}$$
 loads ($F_{x, Ed} > 0$). Equation is not valid for compressive $F_{x, Ed}$ loads ($F_{x, Ed} < 0$).

For Shear in Equation, user must ADM ITIONALL Fixed in $F_{x, Ed} > 0$.

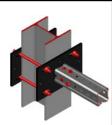
For $F_{y, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)$ and $F_{x, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)$ and $F_{x, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)$ and $F_{x, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)$ and $F_{x, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)$ and $F_{x, Rd} \times \left(1 - \frac{F_{x, Ed}}{F_{x, Rd}}\right)$

Loading case: Boxed

Bill of Material for this loading case:

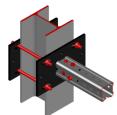
1x MIC-S120-CH Hardware not included in packaging:

Base plate

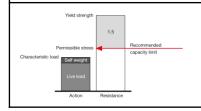

1x MIB-SCH 2174676 Threaded rods cut to particular length 419104

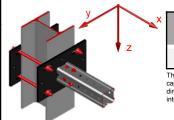
4x AM16x1000 8.8 HDG...m Lock washer

8x LW M16 HDG plus washer 2185343


Nut

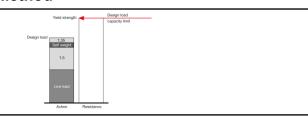
8x M16-F nut 304767


Combinations covered by loading case


Connector used for a perpendicular connection of MI-120 girder to flange of structural steel profiles. For flange width 235-300mm.

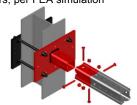
Recommended loading capacity - simplified for most common applications

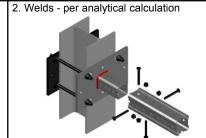
Method

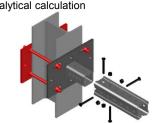

±Fx,rec. [kN]	±Fy,rec. [kN]	±Fz,rec. [kN]
17.67	12.67	12.67

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas

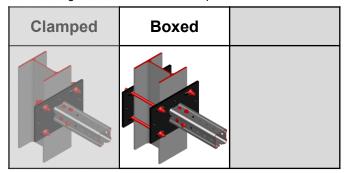
Design loading capacity - 3D


1/3


Method

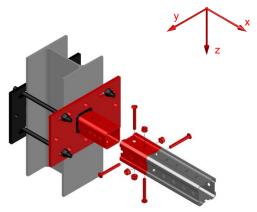

Limiting components of capacity evaluated in following tables:

1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation


3. Base plate and through bolts - per analytical calculation

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

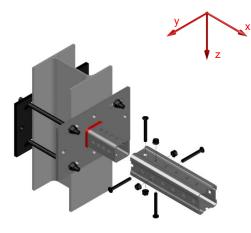

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connection system, including connector, hardware and affected portion of MI-120 girders, per FEA simulation



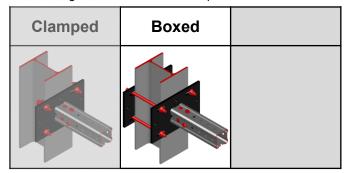
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.50	55.30	53.80	53.80	58.10	58.10
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.39	5.39	4.07	4.07	3.00	3.00

Interaction:

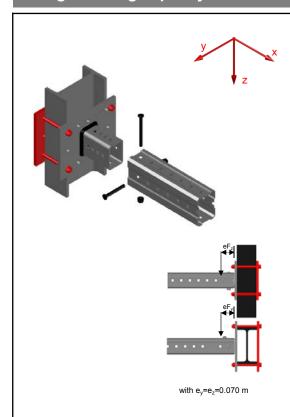
$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Welds - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
316.42	316.42	81.16	81.16	100.68	100.68
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.16	9.16	5.18	5.18	6.04	6.04


Interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3/3

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
150.80	Not decisive	19.00	19.00	19.00	19.00
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
2.57	2.57	10.86	10.86	12.29	12.29

Interaction:

Normal force interaction:

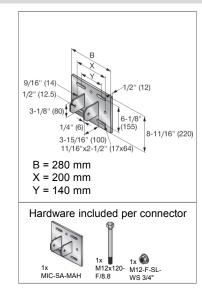
The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the

$$\frac{F_{xEd}}{F_{xRd}^{'}} + \frac{F_{vEd}^{*}ey}{\dot{M}_{zRd}} + \frac{F_{zEd}^{*}ez}{\dot{M}_{yRd}} + \frac{M_{vEd}}{M_{yRd}^{'}} + \frac{M_{zEd}}{M_{zRd}^{'}} \leq 1$$

- Shear Interaction Equation is <u>only</u> valid for TENSILE $F_{x, Ed}$ loads ($F_{x, Ed} > 0$). Equation is <u>not</u> valid for compressive $F_{x, Ed}$ loads ($F_{x, Ed} < 0$). For Shear interaction, user must ADDITIONALLY verify: $F_{x, Ed} / F_{x, Rd} < 1$.

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{*}}\right)}\right)^{2} + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{*}}\right)}\right)^{2} + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{*}}\right)} \le 1$$

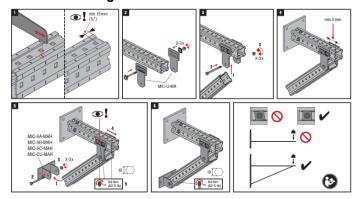
Designation Item number MIC-SA-MAH 2174671

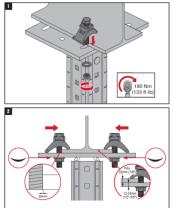

Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Connector, Plate	ISO 1461	55
Bolt; Nut	ISO 1461	40; 45

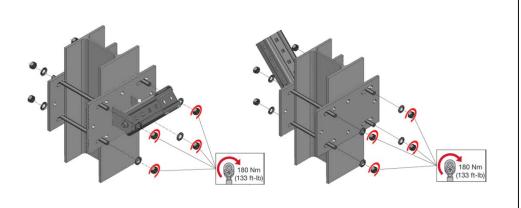
Weight:

6701g incl. components

Description:


Hilti Hot-dipped galvanized baseplate connector, used for anchoring a MI-90 girder to a steel beam at an angle, usually when it's used as a brace for another girder. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using one bolt through a hole, which enables various angles. For use with M16 hardware.


Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modul	us are according to FN 1993	-1-1 and used for all Eurocod	e calculations	


Instruction For Use:

For both loading cases:

For clamped loading case For boxed loading case (not attached to the packaging)

Possible loading cases				
Clamped Boxed				

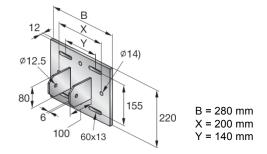
Design criteria used for loading capacity

Methodology:

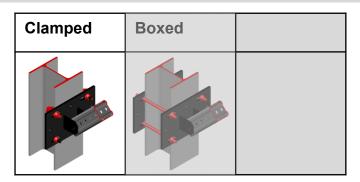
- Finite element analysis
- Analytic calculation

Standards and codes:

	*** * ·	
EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008
	·	


Software:

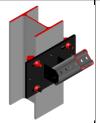
- Ansys 16.0
- Microsoft Excel
- Mathcad 15


Validity:

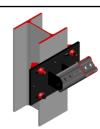
- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Simplified drawing:

Loading case: Clamped

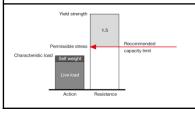

Combinations covered by loading case

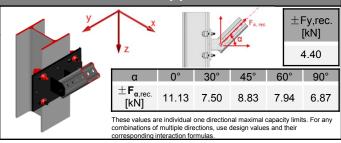
Bill of Material for this loading case:


2174671 MIC-SA-MAH Hardware not included in packaging:

Beam clamps

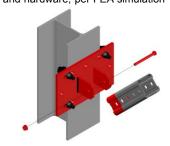
4x MI-SGC M16 387398

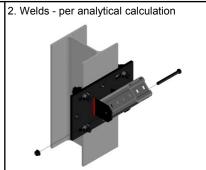


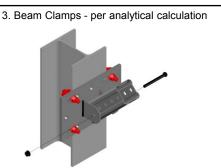

Connector used for an angled connection of MI-90 to structural steel profiles (bracing). For flange width 75-165mm.

Recommended loading capacity - simplified for most common applications

Design loading capacity - 3D

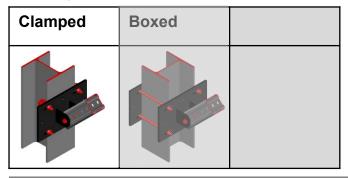

1/4


Method



Limiting components of capacity evaluated in following tables:

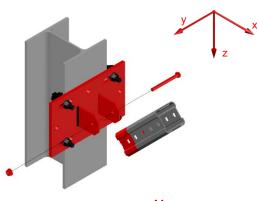
1. Connection system, including connector and hardware, per FEA simulation



Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/4

Summary of design loads*

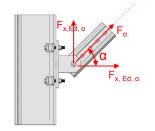
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

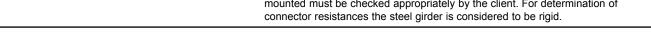
Connection system, including connector and hardware, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
16.70	16.70	6.60	6.60	16.70	16.70
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.70	0.70	0.00	0.00	0.00	0.00

Note: Design Strength values for girder Torsion about the αx -axis ($M_{\alpha x}$) are valid for any bracing angle.

Values include verification of hexagonal bolt


Interaction:


Due to the fact, that the same resistance values as for MIC-CU-MA are decisive, the same interaction formulation can be used:

$$\left(\frac{F_{xEd\alpha}}{F_{xRd}^{'}}\right)^{2} + \left(\frac{F_{zEd\alpha}}{F_{zRd}^{'}}\right)^{2} + \frac{F_{yEd}}{F_{yRd}^{'}} + \frac{M_{xEd}}{M_{xRd}^{'}} \le 1$$

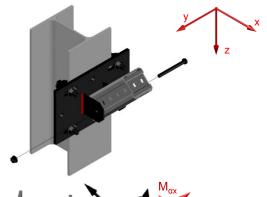
Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

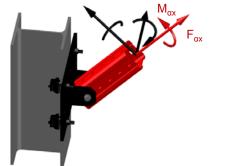
$$F_{x, Ed, \alpha} = F_{\alpha} \times \cos(\alpha)$$

 $F_{z, Ed, \alpha} = F_{\alpha} \times \sin(\alpha)$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D


3/4

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

2. Welds - per analytical calculation

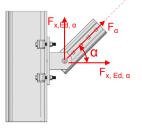
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
325.83	325.83	11.97	11.97	47.45	47.45
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.30	2.30	0.00	0.00	0.00	0.00

Note: Design Strength values for girder Torsion about the α x-axis (M $_{\alpha x}$) are valid for any bracing angle.

Values include verification of hexagonal bolt

Interaction:

$$\frac{F_{xEd\,\alpha}}{F_{xRd}^{'}} + \frac{F_{zEd\,\alpha}}{F_{zRd}^{'}} + \frac{F_{vEd}}{F_{vRd}} + \frac{M_{xEd}}{M_{xRd}^{'}} \le 1$$


Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

$$F_{x Ed \alpha} = F_{\alpha} \times \cos(\alpha)$$

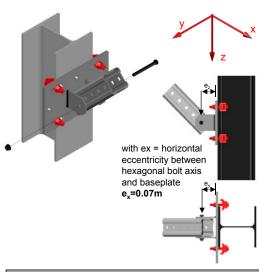
$$Fz'_{Ed \alpha} = F_{\alpha} \times \sin(\alpha)$$

$$M'_{x,Ed} = M_{\alpha x}$$

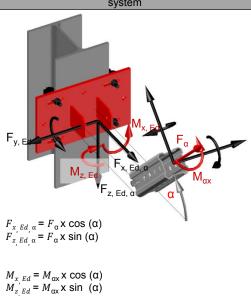
$$M'_{x,Ed} = M_{\alpha x}$$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

4/4


Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

3. Beam Clamps - per analytical calculation

12
Transition of the forces generated on inclined brace to base material connector's coordinate
system

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.84	0.84	6.66	6.66	3.33	3.33

Normal force interaction:

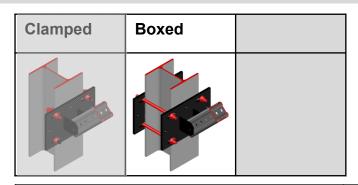
The eccentricity $\mathbf{e}_{\mathbf{y}}$ and $\mathbf{e}_{\mathbf{z}}$ between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the interaction formula.

$$\frac{F_{xEd\,\alpha}}{F_{xRd}^{'}} + \frac{F_{yEd}\times ey}{M_{zRd}} + \frac{F_{zEd\,\alpha}\times ez}{M_{yRd}^{'}} + \frac{M_{zEd}}{M_{zRd}^{'}} \leq 1$$

with $e_v = e_z = 0.070$ m

Shear force interaction:

Shear force interaction for +Fx (tensile normal force):


$$\sqrt{\left(\frac{F_{y_{,}Ed}}{F_{y_{,}Rd} \times \left(1 - \frac{F_{x_{,}Ed}}{F_{x_{,}Rd}}\right)}\right)^{2} + \left(\frac{F_{z_{,}Ed}}{F_{z_{,}Rd} \times \left(1 - \frac{F_{x_{,}Ed}}{F_{x_{,}Rd}}\right)}\right)^{2}} + \frac{M_{x_{,}Ed}}{M_{x_{,}Rd} \times \left(1 - \frac{F_{x_{,}Ed}}{F_{x_{,}Rd}}\right)} \le 1$$

Shear force interaction for -Fx (compressive normal force):

$$\sqrt{\left(\frac{F_{y Ed}}{F_{y Rd}}\right)^{2} + \left(\frac{F_{z Ed}}{F_{z Rd}}\right)^{2}} + \frac{M_{x Ed}}{M_{x Rd}} \le 1$$

Note: Due to the fact, that depending on the inclination of the channel, the acting torsional moment Max can either generate shear or tension, it will be considered in both interactions.

Loading case: Boxed

Bill of Material for this loading case:

1x MIC-SA-MAH 2174671

Hardware not included in packaging:

Base plate

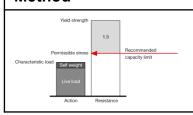
1x MIB-SAH 2174674 Threaded rods cut to particular length

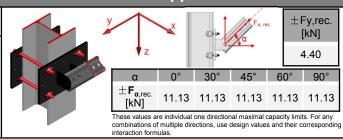
4x AM16x1000 8.8 HDG...m 419104 Lock washer

8x LW M16 HDG plus washer 2185343

304767 8x M16-F nut

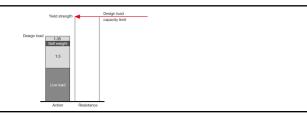
Combinations covered by loading case


Connector used for an angled connection of MI-90 to structural steel profiles (bracing).


For flange width 75-165mm.

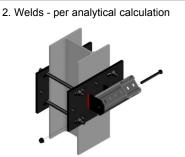
Recommended loading capacity - simplified for most common applications

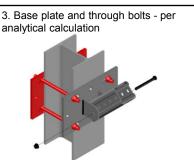
Method



Design loading capacity - 3D

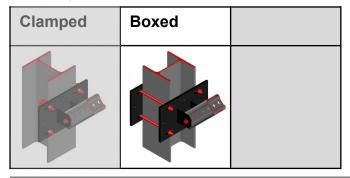

1/4


Method



Limiting components of capacity evaluated in following tables:

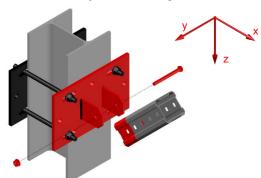
1. Connection system, including connector and hardware, per FEA simulation



Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/4

Summary of design loads*

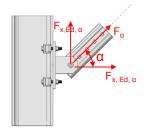
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

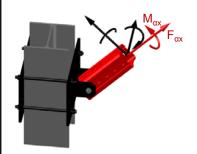
Connection system, including connector and hardware, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
16.70	16.70	6.60	6.60	16.70	16.70
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.70	0.70	0.00	0.00	0.00	0.00

Note: Design Strength values for girder Torsion about the αx -axis ($M_{\alpha x}$) are valid for any bracing angle.

Values include verification of hexagonal bolt


Interaction:


Due to the fact, that the same resistance values as for MIC-CU-MA are decisive, the same interaction formulation can be used:

$$\left(\frac{F_{xEd\,\alpha}}{F_{xRd}^{'}}\right)^{2} + \left(\frac{F_{zEd\,\alpha}}{F_{zRd}^{'}}\right)^{2} + \frac{F_{yEd}}{F_{yRd}^{'}} + \frac{M_{xEd}}{M_{xRd}^{'}} \le 1$$

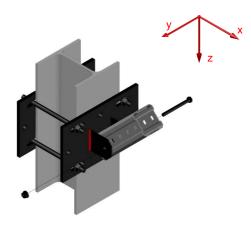
Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

$$F_{x, Ed, \alpha} = F_{\alpha} \times \cos(\alpha)$$

 $F_{z, Ed, \alpha} = F_{\alpha} \times \sin(\alpha)$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

3/4

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

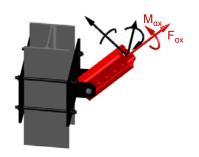
2. Welds - per analytical calculation

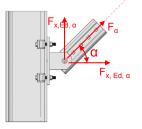
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
325.83	325.83	11.97	11.97	47.45	47.45
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.30	2.30	0.00	0.00	0.00	0.00

Note: Design Strength values for girder Torsion about the α x-axis (M_{α x}) are valid for any bracing angle.

Values include verification of hexagonal bolt

Interaction:


$$\frac{F_{xEd\,\alpha}}{F_{x,Rd}^{'}} + \frac{F_{zEd\,\alpha}}{F_{z,Rd}^{'}} + \frac{F_{vEd}}{F_{y,Rd}^{'}} + \frac{M_{xEd}}{M_{x,Rd}^{'}} \leq 1$$


Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

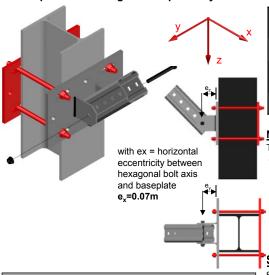
$$F_{x, Ed, \alpha} = F_{\alpha} \times \cos(\alpha)$$

$$F_{z, Ed, \alpha} = F_{\alpha} \times \sin(\alpha)$$

$$M'_{x, Ed, \alpha} = M_{\alpha x}$$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

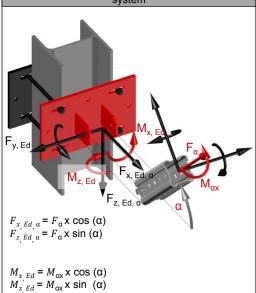
4/4

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

3. Base plate and through bolts - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
164.00	Not decisive	20.66	20.66	20.66	20.66
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.67	1.67	9.84	9.84	6.56	6.56


Normal force interaction:

The eccentricity $\mathbf{e}_{\mathbf{y}}$ and $\mathbf{e}_{\mathbf{z}}$ between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the interaction formula.

$$\frac{F_{\stackrel{XEd}{\alpha}} + F_{\stackrel{YEd}{\alpha}} \times ey}{F_{\stackrel{XRd}{\alpha}} + F_{\stackrel{ZEd}{\alpha}} \times ez} + \frac{M_{\stackrel{ZEd}{\alpha}} \times ez}{M_{\stackrel{ZRd}{\alpha}}} \le 1$$

with $e_y=e_z=0.070$ m

Transition of the forces generated on inclined brace to base material connector's coordinate system

Shear force interaction:

Shear force interaction for +Fx (tensile normal force):

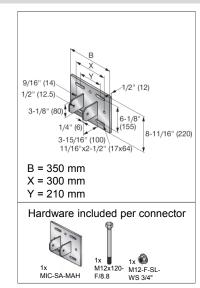
$$\sqrt{\left(\frac{F_{y_{,Rd}}}{F_{y_{,Rd}} \times \left(1 - \frac{F_{x_{,Ed}}}{F_{x_{,Rd}}}\right)}\right)^{2} + \left(\frac{F_{z_{,Rd}}}{F_{z_{,Rd}} \times \left(1 - \frac{F_{x_{,Ed}}}{F_{x_{,Rd}}}\right)}\right)^{2}} + \frac{M_{x_{,Rd}}}{M_{x_{,Rd}} \times \left(1 - \frac{F_{x_{,Ed}}}{F_{x_{,Rd}}}\right)} \le 1$$

Shear force interaction for -Fx (compressive normal force):

$$\sqrt{\left(\frac{F_{y Ed}}{F_{y Rd}}\right)^{2} + \left(\frac{F_{z Ed}}{F_{z Rd}}\right)^{2}} + \frac{M_{x Ed}}{M_{x Rd}} \le 1$$

Note: Due to the fact, that depending on the inclination of the channel, the acting torsional moment Max can either generate shear or tension, it will be considered in both interactions.

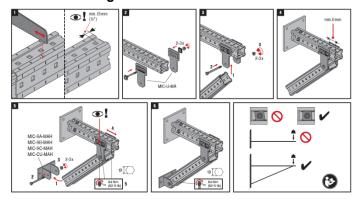
Designation Item number MIC-SB-MAH 2174672

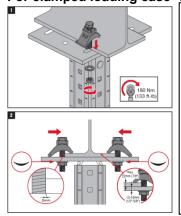

Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Connector, Plate	ISO 1461	55
Bolt; Nut	ISO 1461	40; 45

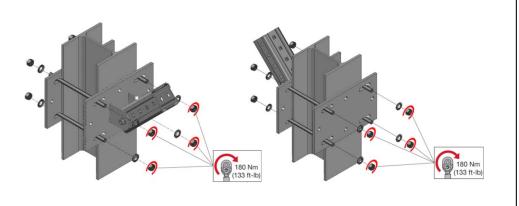
Weight:

8154 g incl. components

Description:


Hilti Hot-dipped galvanized baseplate connector, used for anchoring a MI-90 girder to a steel beam at an angle, usually when it's used as a brace for another girder. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using one bolt through a hole, which enables various angles. For use with **M16** hardware.


Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Connector, Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modul	us are according to FN 1993	-1-1 and used for all Eurocod	e calculations	


Instruction For Use:

For both loading cases:

For clamped loading case For boxed loading case (not attached to the packaging)

Possible loadi	Possible loading cases				
Clamped	Boxed				

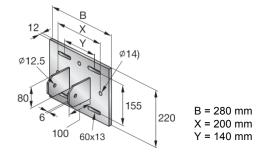
Design criteria used for loading capacity

Methodology:

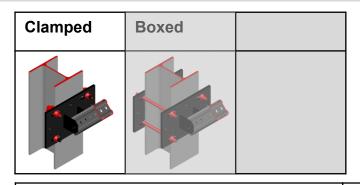
- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008


Software:

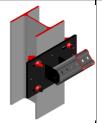
- Ansys 16.0
- Microsoft Excel
- Mathcad 15


Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Simplified drawing:

Loading case: Clamped

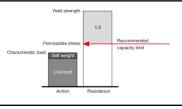

Combinations covered by loading case

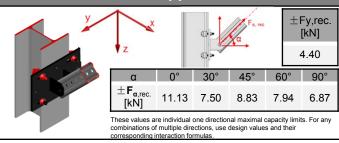
Bill of Material for this loading case:

MIC-SB-MAH 2174672 Hardware not included in packaging:

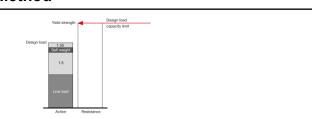
Beam clamps

4x MI-SGC M16 387398

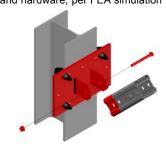


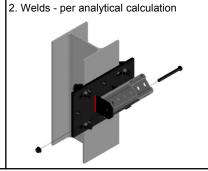

Connector used for an angled connection of MI-90 to structural steel profiles (bracing). For flange width 165-235mm.

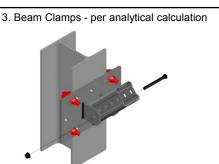
Recommended loading capacity - simplified for most common applications



Design loading capacity - 3D

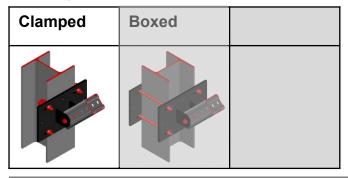

1/4


Method



Limiting components of capacity evaluated in following tables:

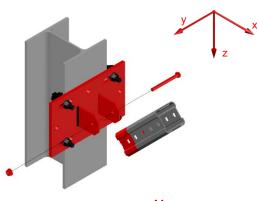
1. Connection system, including connector and hardware, per FEA simulation



Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/4

Summary of design loads*

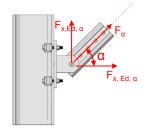
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

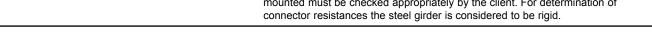
Connection system, including connector and hardware, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
16.70	16.70	6.60	6.60	16.70	16.70
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.70	0.70	0.00	0.00	0.00	0.00

Note: Design Strength values for girder Torsion about the αx -axis ($M_{\alpha x}$) are valid for any bracing angle.

Values include verification of hexagonal bolt


Interaction:


Due to the fact, that the same resistance values as for MIC-CU-MA are decisive, the same interaction formulation can be used:

$$\left(\frac{F_{xEd\alpha}}{F_{xRd}^{'}}\right)^{2} + \left(\frac{F_{zEd\alpha}}{F_{zRd}^{'}}\right)^{2} + \frac{F_{yEd}}{F_{yRd}^{'}} + \frac{M_{xEd}}{M_{xRd}^{'}} \le 1$$

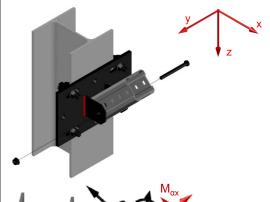
Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

$$F_{x, Ed, \alpha} = F_{\alpha} \times \cos(\alpha)$$

 $F_{z, Ed, \alpha} = F_{\alpha} \times \sin(\alpha)$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

3/4

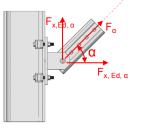
Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

2. Welds - per analytical calculation

FFX,Ra [kN]	-FX,Ra [kN]	+Fy,Ra [kN]	-Fy,Ra [kN]	+FZ,R0 [kN]	-F2,R0 [kN]
325.83	325.83	11.97	11.97	47.45	47.45
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
2.30	2.30	0.00	0.00	0.00	0.00

Note: Design Strength values for girder Torsion about the α x-axis (M_{α x}) are valid for any bracing angle.


Values include verification of hexagonal bolt

Interaction:

$$\frac{F_{xEd\alpha}}{F_{xRd}^{'}} + \frac{F_{zEd\alpha}}{F_{zRd}^{'}} + \frac{F_{vEd}}{F_{yRd}^{'}} + \frac{M_{xEd}}{M_{xRd}^{'}} \le 1$$

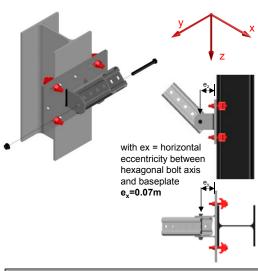
Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

$$F_{x Ed'\alpha} = F_{\alpha} \times \cos(\alpha)$$

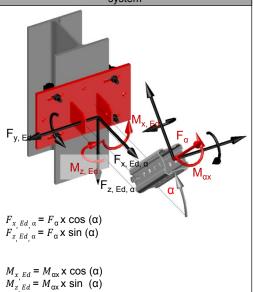
 $Fz'_{Ed'\alpha} = F_{\alpha} \times \sin(\alpha)$
 $M'_{xEd} = M_{\alpha x}$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

4/4


Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

3. Beam Clamps - per analytical calculation

Transition of the forces general brace to base material connections	
system	

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.12	1.12	6.66	6.66	6.66	6.66

Normal force interaction:

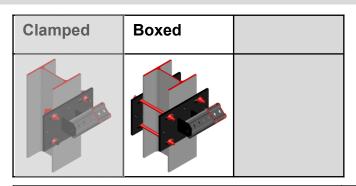
The eccentricity $\mathbf{e}_{\mathbf{y}}$ and $\mathbf{e}_{\mathbf{z}}$ between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the interaction formula.

$$\frac{F_{xEd,\alpha}}{F_{xRd}} + \frac{F_{yEd} \times ey}{M_{zRd}} + \frac{F_{zEd,\alpha} \times ez}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

with $e_v = e_z = 0.070$ m

Shear force interaction:

Shear force interaction for +Fx (tensile normal force):


$$\sqrt{\left(\frac{F_{y_{,}Ed}}{F_{y_{,}Rd} \times \left(1 - \frac{F_{x_{,}Ed}}{F_{x_{,}Rd}}\right)}\right)^{2} + \left(\frac{F_{z_{,}Ed}}{F_{z_{,}Rd} \times \left(1 - \frac{F_{x_{,}Ed}}{F_{x_{,}Rd}}\right)}\right)^{2}} + \frac{M_{x_{,}Ed}}{M_{x_{,}Rd} \times \left(1 - \frac{F_{x_{,}Ed}}{F_{x_{,}Rd}}\right)} \le 1$$

Shear force interaction for -Fx (compressive normal force):

$$\sqrt{\left(\frac{F_{y Ed}}{F_{y Rd}}\right)^{2} + \left(\frac{F_{z Ed}}{F_{z Rd}}\right)^{2}} + \frac{M_{x Ed}}{M_{x Rd}} \le 1$$

Note: Due to the fact, that depending on the inclination of the channel, the acting torsional moment Max can either generate shear or tension, it will be considered in both interactions.

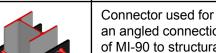
Loading case: Boxed

Bill of Material for this loading case:

2174672 1x MIC-SB-MAH

Hardware not included in packaging:

Base plate


1x MIB-SBH Threaded rods cut to particular length

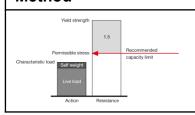
4x AM16x1000 8.8 HDG...m 419104

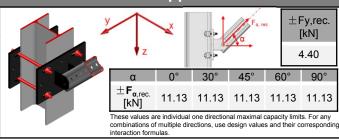
Lock washer

8x LW M16 HDG plus washer 2185343

304767 8x M16-F nut

an angled connection of MI-90 to structural steel profiles (bracing).

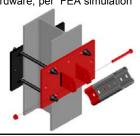

For flange width 165-235mm.

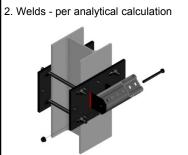

Combinations covered by loading case

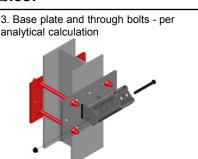
Recommended loading capacity - simplified for most common applications

Method

Design loading capacity - 3D

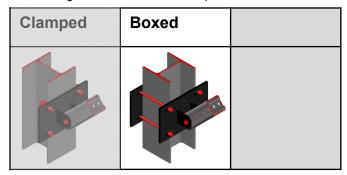

1/4


Method



Limiting components of capacity evaluated in following tables:

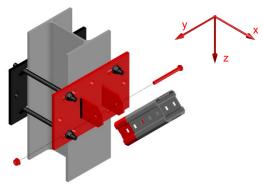
1. Connection system, including connector and hardware, per FEA simulation



Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/4

Summary of design loads*

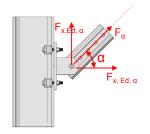
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

Connection system, including connector and hardware, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
16.70	16.70	6.60	6.60	16.70	16.70
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.70	0.70	0.00	0.00	0.00	0.00

Note: Design Strength values for girder Torsion about the αx -axis ($M_{\alpha x}$) are valid for any bracing angle.

Values include verification of hexagonal bolt


Interaction:

Due to the fact, that the same resistance values as for MIC-CU-MA are decisive, the same interaction formulation can be used:

$$\left(\frac{F_{xEd\,\alpha}}{F_{xRd}^{'}}\right)^{2} + \left(\frac{F_{zEd\,\alpha}}{F_{zRd}^{'}}\right)^{2} + \frac{F_{yEd}}{F_{yRd}^{'}} + \frac{M_{xEd}}{M_{xRd}^{'}} \le 1$$

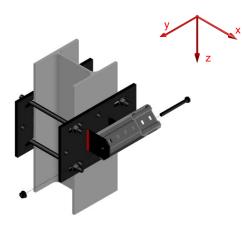
Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

$$F_{x, Ed, \alpha} = F_{\alpha} \times \cos(\alpha)$$

 $F_{z, Ed, \alpha} = F_{\alpha} \times \sin(\alpha)$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

3/4

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

2. Welds - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
325.83	325.83	11.97	11.97	47.45	47.45
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.30	2.30	0.00	0.00	15.80	153.80

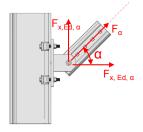
Note: Design Strength values for girder Torsion about the α x-axis (M_{α x}) are valid for any bracing angle.

Values include verification of hexagonal bolt

Interaction:

$$\frac{F_{xEd\,\alpha}}{F_{x,Rd}^{'}} + \frac{F_{zEd\,\alpha}}{F_{z,Rd}^{'}} + \frac{F_{vEd}}{F_{y,Rd}^{'}} + \frac{M_{xEd}}{M_{x,Rd}^{'}} \leq 1$$

Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:


$$F_{x, Ed, \alpha} = F_{\alpha} \times \cos(\alpha)$$

$$F_{z, Ed, \alpha} = F_{\alpha} \times \sin(\alpha)$$

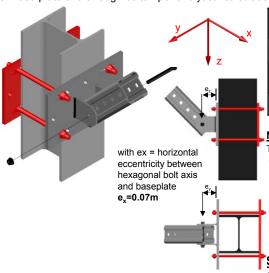
$$M'_{x, Ed, \alpha} = M_{\alpha x}$$

$$Fz'_{Ed'\alpha} = F_{\alpha} \times \sin(\alpha)$$

$$M_{x,Ed} = M_{\alpha}$$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

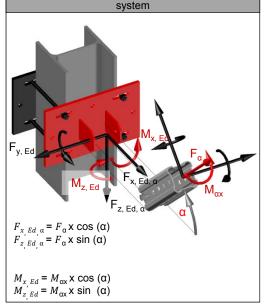
4/4

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

3. Base plate and through bolts - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
158.80	Not decisive	20.01	20.01	20.01	20.01
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.06	2.06	9.53	9.53	10.32	10.32


Normal force interaction:

The eccentricity $\mathbf{e}_{\mathbf{y}}$ and $\mathbf{e}_{\mathbf{z}}$ between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the interaction formula.

$$\frac{F_{xEd,\alpha}}{F_{xRd}} + \frac{F_{yEd} \times ey}{M_{zRd}} + \frac{F_{zEd,\alpha} \times ez}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

with $e_y=e_z=0.070$ m

Transition of the forces generated on inclined brace to base material connector's coordinate

Shear force interaction:

Shear force interaction for +Fx (tensile normal force):

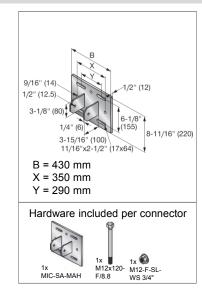
$$\sqrt{\left(\frac{F_{y_{,Rd}}}{F_{y_{,Rd}} \times \left(1 - \frac{F_{x_{,Ed}}}{F_{x_{,Rd}}}\right)}\right)^{2} + \left(\frac{F_{z_{,Rd}}}{F_{z_{,Rd}} \times \left(1 - \frac{F_{x_{,Ed}}}{F_{x_{,Rd}}}\right)}\right)^{2}} + \frac{M_{x_{,Rd}}}{M_{x_{,Rd}} \times \left(1 - \frac{F_{x_{,Ed}}}{F_{x_{,Rd}}}\right)} \le 1$$

Shear force interaction for -Fx (compressive normal force):

$$\sqrt{\left(\frac{F_{y Ed}}{F_{y Rd}}\right)^{2} + \left(\frac{F_{z Ed}}{F_{z Rd}}\right)^{2}} + \frac{M_{x Ed}}{M_{x Rd}} \le 1$$

Note: Due to the fact, that depending on the inclination of the channel, the acting torsional moment Max can either generate shear or tension, it will be considered in both interactions.

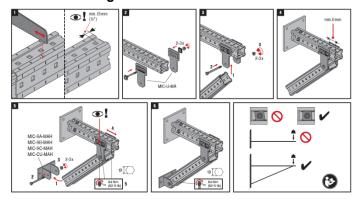
Designation Item number MIC-SC-MAH 2174673

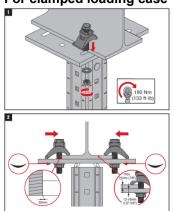

Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Connector, Plate	ISO 1461	55
Bolt; Nut	ISO 1461	40; 45

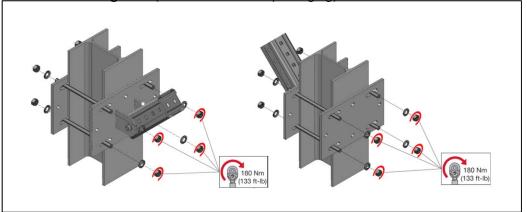
Weight:

8154 g incl. components

Description:


Hilti Hot-dipped galvanized baseplate connector, used for anchoring a MI-90 girder to a steel beam at an angle, usually when it's used as a brace for another girder. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using one bolt through a hole, which enables various angles. For use with M16 hardware.


Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
$f_y = 235 \frac{N}{mm^2}$	$f_{\rm u}=360\frac{{\scriptscriptstyle N}}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
	$f_y = 235 \frac{N}{mm^2}$ $f_y = 640 \frac{N}{mm^2}$	$f_y = 235 \frac{N}{mm^2}$ $f_u = 360 \frac{N}{mm^2}$ $f_u = 800 \frac{N}{mm^2}$	$f_y = 235 \frac{N}{mm^2}$ $f_u = 360 \frac{N}{mm^2}$ $E = 210000 \frac{N}{mm^2}$


Instruction For Use:

For both loading cases:

For clamped loading case For boxed loading case (not attached to the packaging)

Possible loading cases				
Clamped Boxed				

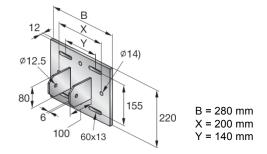
Design criteria used for loading capacity

Methodology:

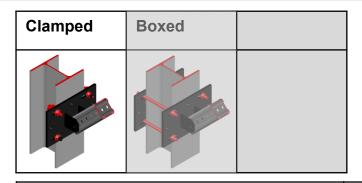
- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

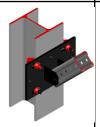

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15


Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Simplified drawing:


Loading case: Clamped

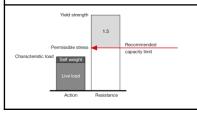
Bill of Material for this loading case:

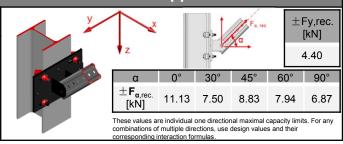
MIC-SC-MAH 2174673 Hardware not included in packaging:

Beam clamps

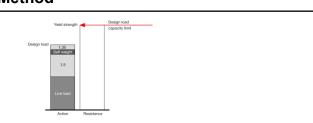
4x MI-SGC M16 387398

Combinations covered by loading case

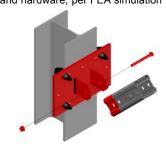

Connector used for an angled connection of MI-90 to structural steel profiles (bracing).

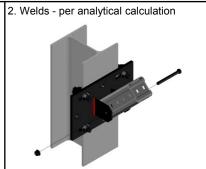

For flange width 235-300mm.

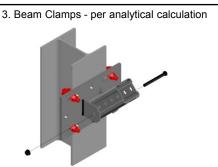
Recommended loading capacity - simplified for most common applications



Design loading capacity - 3D

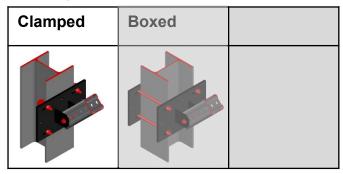

1/4


Method



Limiting components of capacity evaluated in following tables:

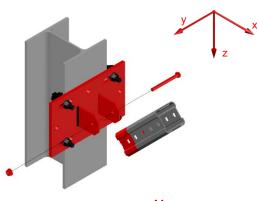
1. Connection system, including connector and hardware, per FEA simulation



Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/4

Summary of design loads*

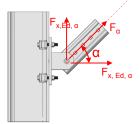
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

Connection system, including connector and hardware, per FEA simulation

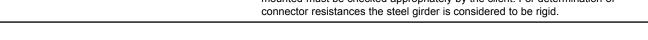
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
16.70	16.70	6.60	6.60	16.70	16.70
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.70	0.70	0.00	0.00	0.00	0.00

Note: Design Strength values for girder Torsion about the αx -axis ($M_{\alpha x}$) are valid for any bracing angle.

Values include verification of hexagonal bolt


Interaction:

Due to the fact, that the same resistance values as for MIC-CU-MA are decisive, the same interaction formulation can be used:


$$\left(\frac{F_{xEd\alpha}}{F_{xRd}^{'}}\right)^{2} + \left(\frac{F_{zEd\alpha}}{F_{zRd}^{'}}\right)^{2} + \frac{F_{yEd}}{F_{yRd}^{'}} + \frac{M_{xEd}}{M_{xRd}^{'}} \le 1$$

Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

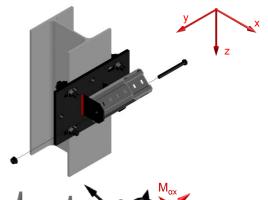
$$F_{x, Ed, \alpha} = F_{\alpha} \times \cos(\alpha)$$

 $F_{z, Ed, \alpha} = F_{\alpha} \times \sin(\alpha)$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

3/4

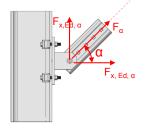
Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

2. Welds - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
325.83	325.83	11.97	11.97	47.45	47.45
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.30	2.30	0.00	0.00	15.80	

Note: Design Strength values for girder Torsion about the α x-axis (M_{α x}) are valid for any bracing angle.


Values include verification of hexagonal bolt

Interaction:

$$\frac{F_{xEd\,\alpha}}{F_{xRd}^{'}} + \frac{F_{zEd\,\alpha}}{F_{zRd}^{'}} + \frac{F_{yEd}}{F_{yRd}^{'}} + \frac{M_{xEd}}{M_{xRd}^{'}} \leq 1$$

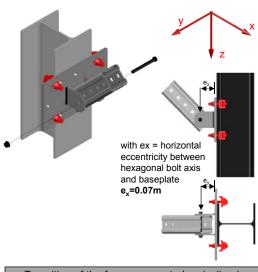
Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

$$F_{x Ed, \alpha} = F_{\alpha} \times \cos(\alpha)$$

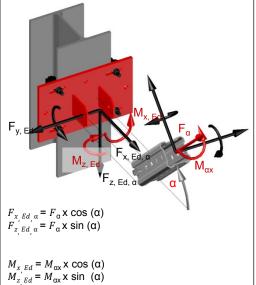
 $Fz'_{Ed, \alpha} = F_{\alpha} \times \sin(\alpha)$
 $M'_{x,Ed} = M_{\alpha x}$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

4/4


Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

3. Beam Clamps - per analytical calculation

Transition of the forces generated on inclined brace to base material connector's coordinate system		with ex = horizontal eccentricity between hexagonal bolt axis and baseplate e_x =0.07m
system	brace to base mater	rial connector's coordinate
		system

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.41	1.41	6.66	6.66	8.70	8.70

Normal force interaction:

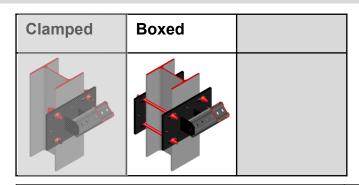
The eccentricity $\mathbf{e}_{\mathbf{y}}$ and $\mathbf{e}_{\mathbf{z}}$ between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the interaction formula.

$$\frac{F_{xEd,\alpha}}{F_{xRd}'} + \frac{F_{yEd} \times ey}{M_{zRd}} + \frac{F_{zEd,\alpha} \times ez}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

with $e_y=e_z=0.070$ m

Shear force interaction:

Shear force interaction for +Fx (tensile normal force):


$$\sqrt{\left(\frac{F_{y_{,}Ed}}{F_{y_{,}Rd} \times \left(1 - \frac{F_{x_{,}Ed}}{F_{x_{,}Rd}}\right)}\right)^{2} + \left(\frac{F_{z_{,}Ed}}{F_{z_{,}Rd} \times \left(1 - \frac{F_{x_{,}Ed}}{F_{x_{,}Rd}}\right)}\right)^{2}} + \frac{M_{x_{,}Ed}}{M_{x_{,}Rd} \times \left(1 - \frac{F_{x_{,}Ed}}{F_{x_{,}Rd}}\right)} \le 1$$

Shear force interaction for -Fx (compressive normal force):

$$\sqrt{\left(\frac{F_{y Ed}}{F_{y Rd}}\right)^{2} + \left(\frac{F_{z Ed}}{F_{z Rd}}\right)^{2}} + \frac{M_{x Ed}}{M_{x Rd}} \le 1$$

Note: Due to the fact, that depending on the inclination of the channel, the acting torsional moment Max can either generate shear or tension, it will be considered in both interactions.

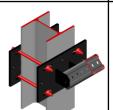
Loading case: Boxed

Bill of Material for this loading case:

2174673 1x MIC-SC-MAH

Hardware not included in packaging:

Base plate


1x MIB-SCH Threaded rods cut to particular length

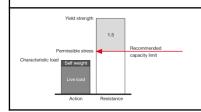
4x AM16x1000 8.8 HDG...m 419104

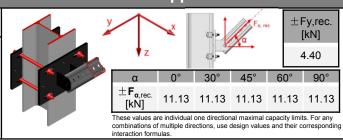
Lock washer

8x LW M16 HDG plus washer 2185343

304767 8x M16-F nut

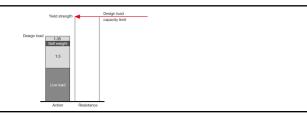
Connector used for an angled connection of MI-90 to structural steel profiles (bracing).


Combinations covered by loading case

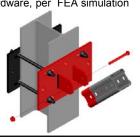

For flange width 235-300mm.

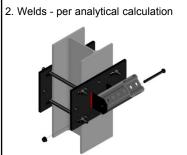
Recommended loading capacity - simplified for most common applications

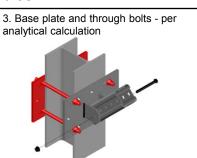
Method



Design loading capacity - 3D

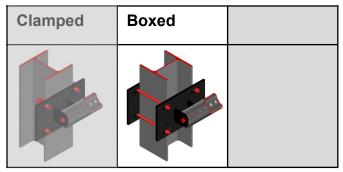

1/4


Method



Limiting components of capacity evaluated in following tables:

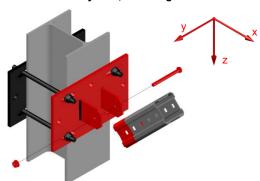
1. Connection system, including connector and hardware, per FEA simulation



Installation Technical Manual - Technical Data - MI system

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/4

Summary of design loads*

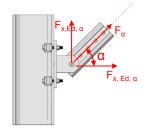
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

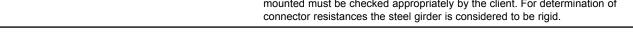
Connection system, including connector and hardware, per FEA simulation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
16.70	16.70	6.60	6.60	16.70	16.70
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.70	0.70	0.00	0.00	0.00	0.00

Note: Design Strength values for girder Torsion about the αx -axis ($M_{\alpha x}$) are valid for any bracing angle.

Values include verification of hexagonal bolt


Interaction:


Due to the fact, that the same resistance values as for MIC-CU-MA are decisive, the same interaction formulation can be used:

$$\left(\frac{F_{xEd\,\alpha}}{F_{xRd}^{'}}\right)^{2} + \left(\frac{F_{zEd\,\alpha}}{F_{zRd}^{'}}\right)^{2} + \frac{F_{yEd}}{F_{yRd}^{'}} + \frac{M_{xEd}}{M_{xRd}^{'}} \le 1$$

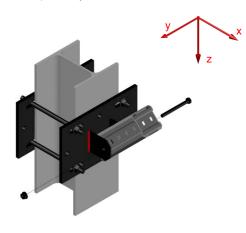
Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

$$F_{x, Ed, \alpha} = F_{\alpha} \times \cos(\alpha)$$

 $F_{z, Ed, \alpha} = F_{\alpha} \times \sin(\alpha)$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

3/4

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

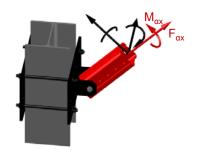
2. Welds - per analytical calculation

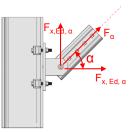
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
325.83	325.83	11.97	11.97	47.45	47.45
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.30	2.30	0.00	0.00	15.80	15.80

Note: Design Strength values for girder Torsion about the α x-axis (M_{α x}) are valid for any bracing angle.

Values include verification of hexagonal bolt

Interaction:


$$\frac{F_{xEd\,\alpha}}{F_{x,Rd}^{'}} + \frac{F_{zEd\,\alpha}}{F_{z,Rd}^{'}} + \frac{F_{yEd}}{F_{y,Rd}^{'}} + \frac{M_{xEd}}{M_{x,Rd}^{'}} \leq 1$$


Use of $F_{\alpha x}$: In case only the force along the brace axis (αx) is known, determinate load components as follows:

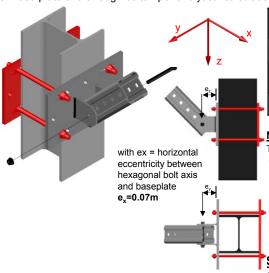
$$F_{x,Ed,\alpha} = F_{\alpha} \times \cos(\alpha)$$

$$F_{z,Ed,\alpha} = F_{\alpha} \times \sin(\alpha)$$

$$M'_{x,Ed} = M_{\alpha x}$$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

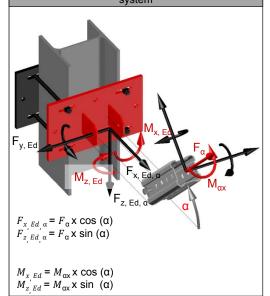
4/4

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

3. Base plate and through bolts - per analytical calculation

_						
	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
١	150.80	Not decisive	19.00	19.00	19.00	19.00
	+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
I	2.57	2.57	9.05	9.05	12.82	12.82


Normal force interaction:

The eccentricity $\mathbf{e}_{\mathbf{y}}$ and $\mathbf{e}_{\mathbf{z}}$ between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the interaction formula.

$$\frac{F_{xEd,\alpha}}{F_{xRd}} + \frac{F_{yEd} \times ey}{M_{zRd}} + \frac{F_{zEd,\alpha} \times ez}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

with $e_y=e_z=0.070$ m

Transition of the forces generated on inclined brace to base material connector's coordinate system

Shear force interaction:

Shear force interaction for +Fx (tensile normal force):

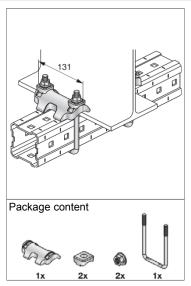
$$\sqrt{\left(\frac{F_{y_{,Rd}}}{F_{y_{,Rd}} \times \left(1 - \frac{F_{x_{,Ed}}}{F_{x_{,Rd}}}\right)}\right)^{2} + \left(\frac{F_{z_{,Rd}}}{F_{z_{,Rd}} \times \left(1 - \frac{F_{x_{,Ed}}}{F_{x_{,Rd}}}\right)}\right)^{2}} + \frac{M_{x_{,Rd}}}{M_{x_{,Rd}} \times \left(1 - \frac{F_{x_{,Ed}}}{F_{x_{,Rd}}}\right)} \le 1$$

Shear force interaction for -Fx (compressive normal force):

$$\sqrt{\left(\frac{F_{y Ed}}{F_{y Rd}}\right)^{2} + \left(\frac{F_{z Ed}}{F_{z Rd}}\right)^{2}} + \frac{M_{x Ed}}{M_{x Rd}} \le 1$$

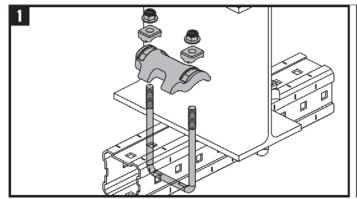
Note: Due to the fact, that depending on the inclination of the channel, the acting torsional moment Max can either generate shear or tension, it will be considered in both interactions.

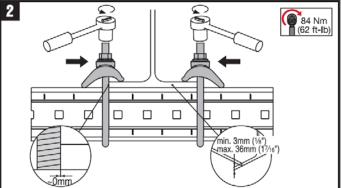
Item number **Designation** MI-DGC 90 233860


Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Bolt; Nut	ISO 1461	40; 45
Clamp	ISO 1461	55
Beam Clamp U-bolt	ASTM A153	56

Weight:

1015.6 g incl. components


Submittal text:


Hilti Hot-dipped galvanized steel beam clamp, typically used to connect a horizontal MI-90 or MIQ-90 girder to steel beam. Two U-bolts carry the girder and are connected to the clamp with saddles and nuts.

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_{\rm u} = 800 \frac{\scriptscriptstyle N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Clamp EN-GJMB-450-6 (DIN EN 1562)	$f_y = 270 \frac{N}{mm^2}$	$f_u = 450 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Beam Clamp U-bolt 41Cr4 (DIN EN 10083-3 2007.1)	$f_y = 800 \frac{N}{mm^2}$	$f_u = 1000 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modulus are according to EN 1993-1-1 and used for all Eurocode calculations				

Instruction For Use:

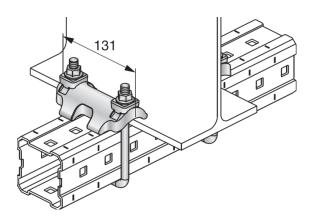
Possible loading cases		
Standard		

Design criteria used for loading capacity

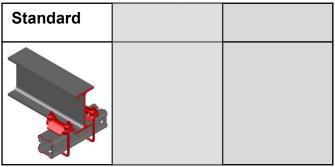
Methodology:

- Analytic calculation
- Hardware tests

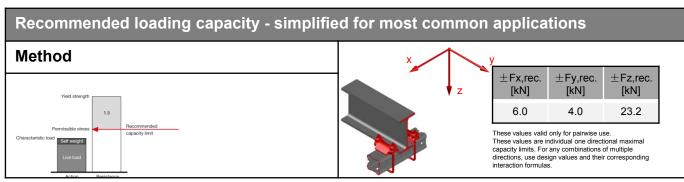
Standards and codes:

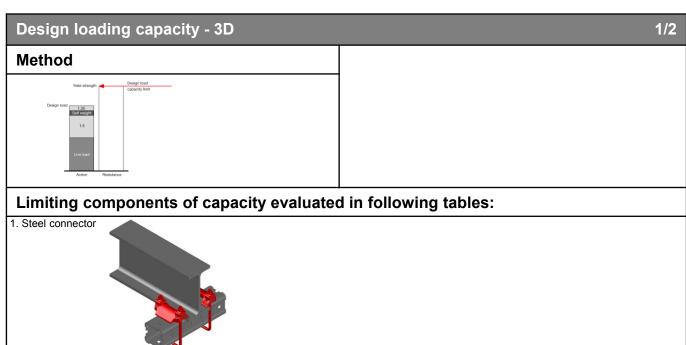

_		~~ .	
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions – densities, self-weight, imposed loads for buildings	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

Software:


- Mathcad 15.0
- Microsoft Excel

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

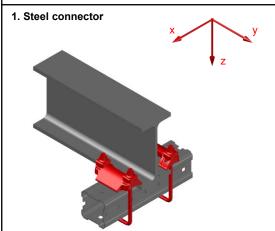

Simplified drawing:



Loading case: Standard Combinations covered by loading case BOM: Connector used for horizontal connection Connector incl. all associated of MI-90 or MIQ-90 to the flanges components of structural steel profiles. 233860 MI-DGC 90 Flange thickness 3-36mm. Associated MI System girders (channels) MI-90 3m 304799 MI-90 6m 304798

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Standard	

Design loading capacity - 3D

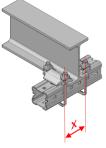
2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

valid only for pairwise use

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
8.93	8.93	6.09	6.09	34.80	34.80
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.76	1.76	17.4*x	17.4*x	3.04*x	


Interaction:

These values valid only for pairwise use. for tension forces

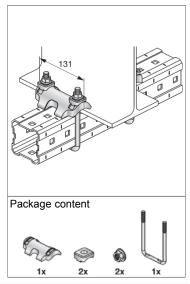
$$\frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} \le 1$$

for shear forces

$$\sqrt{\left(\frac{F_{x.Ed}}{F_{x.Rd}}\right)^2 + \left(\frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}}\right)^2} \le 1$$

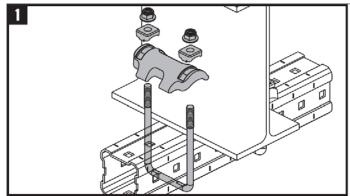
with x [m] = width of flange + 0,012m

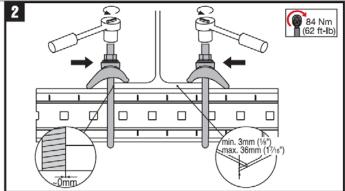
Item number Designation **MI-DGC 120** 233861

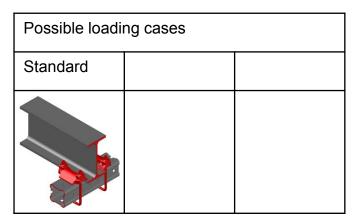

Corrosion protection:				
Material	HDG per	Zinc thickness, min. (µm)		
Bolt; Nut	ISO 1461	40; 45		
Clamp	ISO 1461	55		
Beam Clamp U-bolt	ASTM A153	56		

Weight:

1041.9 g incl. components


Submittal text:


Hilti Hot-dipped galvanized steel beam clamp, typically used to connect a horizontal MI-120 girder to a steel beam. Two U-bolts carry the girder and are connected to the clamp with saddles and nuts.


Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Bolt; Nut F Class 8.8 (ISO 898-1); Grade 8 (ISO 898-2)	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Clamp EN-GJMB-450-6 (DIN EN 1562)	$f_y = 270 \frac{N}{mm^2}$	$f_u = 450 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Beam Clamp U-bolt 41Cr4 (DIN EN 10083-3 2007.1)	$f_y = 800 \frac{N}{mm^2}$	$f_{\rm u}=1000\frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Elasticity and Shear Modulus	us are according to EN 1993-	-1-1 and used for all Eurocod	e calculations	

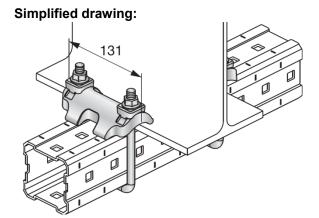
Instruction For Use:

Design criteria used for loading capacity

Methodology:

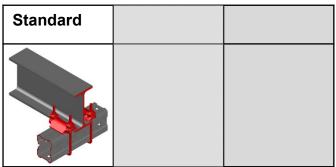
- Analytic calculation
- Hardware tests

Standards and codes:

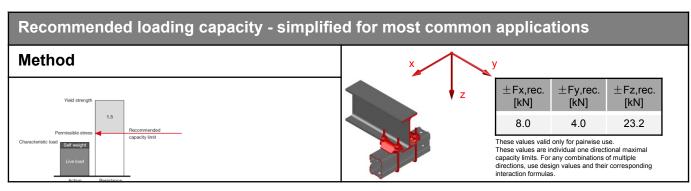

_			
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

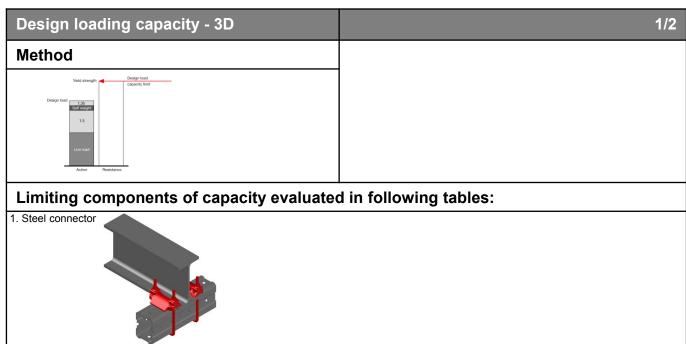
Software:

- Mathcad 15.0
- Microsoft Excel


Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads





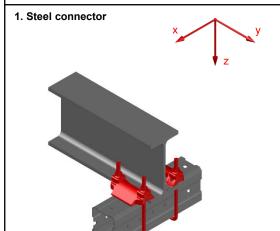
MI-DGC 120 Base Material Connector - Steel

Loading case: Standard	Combinations covered by loading case
BOM: Connector incl. all associated components MI-DGC 120 233861 Associated MI System girders (channels) MI-120 3m 304800 MI-120 6m 304801	Connector used for horizontal connection of MI-120 to the flanges of structural steel profiles. Flange thickness 3-36mm.

MI-DGC 120 Base Material Connector - Steel

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Toodiang nom and	Timal of ourior oxpano	
Standard		

Design loading capacity - 3D

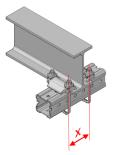
2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

valid only for pairwise use

	+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
	8.93	8.93	6.09	6.09	34.80	34.80
	+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
I	1.76	1.76	17.4*x	17.4*x	3.04*x	3.04*x


Interaction:

These values valid only for pairwise use. for tension forces

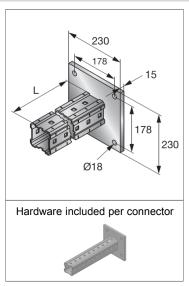
$$\frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} \leq 1$$

for shear forces

$$\sqrt{\left(\frac{F_{x.Ed}}{F_{x.Rd}}\right)^2 + \left(\frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}}\right)^2} \le 1$$

with x [m] = width of flange + 0,012m

Designation	Item number
MIC-C90-DH- 500	2203572
MIC-C90-DH- 750	2203573
MIC-C90-DH-1000	2203574
MIC-C90-DH-1500	2203575
MIC-C90-DH-2000	2203576


Corrosion protection:					
Material	HDG per	Zinc thickness, min. (µm)			
Bracket	ISO 1461	55			

Weight:

MIC-C90-DH- 500	11086g
MIC-C90-DH- 750	13473g
MIC-C90-DH-1000	15860g
MIC-C90-DH-1500	20634g
MIC-C90-DH-2000	25407g

Submittal text:

Hilti Hot-dipped galvanized bracket used as fixed to concrete. Four oblong anchor holes enable fine tuning of baseplate position, and girder is welded on the baseplate.

Designation	L[mm]
MIC-C90-DH - 500	500
MIC-C90-DH - 750	750
MIC-C90-DH -1000	1000
MIC-C90-DH -1500	1500
MIC-C90-DH -2000	2000

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{\scriptscriptstyle N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Girder DD11 MOD (EN 10111)	$f_y = 235 \frac{\scriptscriptstyle N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Values for Modulus of Flasticity and Shear Modul	us are according to FN 1993-	1-1 and used for all Furnced	e calculations	

Instruction For Use:

No IFU attached to the packaging

Respect IFU from the used anchor

Possible loading cases			
Standard			

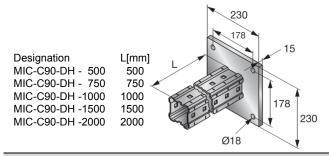
Design criteria used for loading capacity

Methodology:

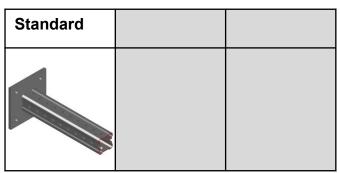
- Finite element analysis
- Analytic calculation

Standards and codes:

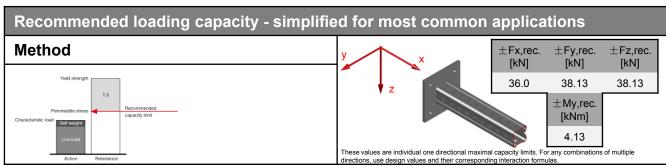
EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008
	1 11	

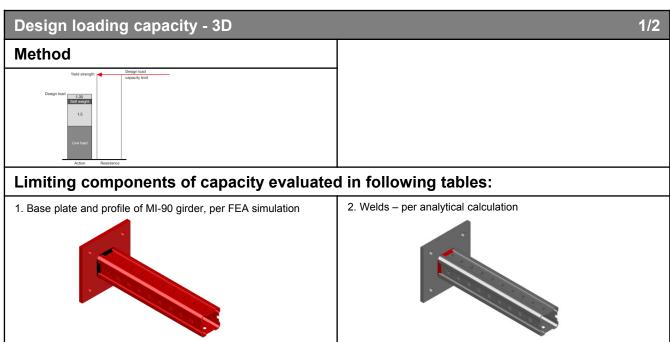

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

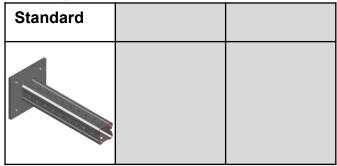

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Simplified drawing:



Loading case: Standard	Combinations covered by loading case	
Brackets: MIC-C90-DH- 500 2203572 MIC-C90-DH- 750 2203573 MIC-C90-DH-1000 2203574 MIC-C90-DH-1500 2203575 MIC-C90-DH-2000 2203576 Associated anchors* for cracked concrete 4x HST3 M16x135 35/15 2105858 *Anchors not incl. in capacity limits	Pre-fab bracket for perpendicular connection to concrete.	



Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

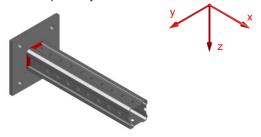
Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Base plate and profile of MI-90 girder, per FEA simulation



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
116.60	101.54	57.20	57.20	57.20	57.20
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.50	4.50	6.20	6.20	6.20	6.20

includes cross section resistance of steel base plate and channel Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

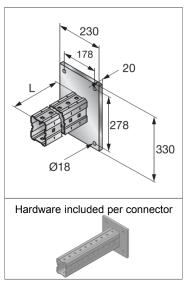
2. Welds - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
285.11	285.11	116.39	116.39	116.39	116.39
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.54	9.54	6.84	6.84	6.84	6.84

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Designation	Item number
MIC-C120-DH- 500	2203577
MIC-C120-DH- 750	2203578
MIC-C120-DH-1000	2203579
MIC-C120-DH-1500	2203580
MIC-C120-DH-2000	2203581


Corrosion protection:				
Material	HDG per	Zinc thickness, min. (μm)		
Bracket	ISO 1461	55		

Weight:

MIC-C120-DH- 500	18528g
MIC-C120-DH- 750	21715g
MIC-C120-DH-1000	24903g
MIC-C120-DH-1500	31278g
MIC-C120-DH-2000	37653g

Submittal text:

Hilti Hot-dipped galvanized bracket used as fixed to concrete. Four oblong anchor holes enable fine tuning of baseplate position, and girder is welded on the baseplate.

Designation	L[mm]
MIC-C120-DH- 500	500
MIC-C120-DH- 750	750
MIC-C120-DH-1000	1000
MIC-C120-DH-1500	1500
MIC-C120-DH-2000	2000

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Girder DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	E = 210000 $\frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Flasticity and Shear Modul	us are according to FN 1993.	1-1 and used for all Furnced	e calculations	

Instruction For Use:

No IFU attached to the packaging

Respect IFU from the used anchor

Possible loading cases		
Standard		

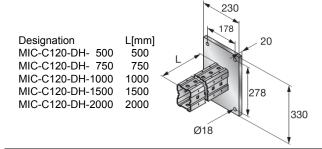
Design criteria used for loading capacity

Methodology:

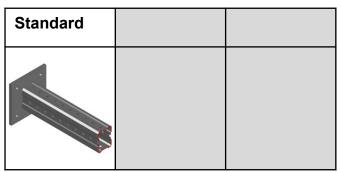
- Finite element analysis
- Analytic calculation

Standards and codes:

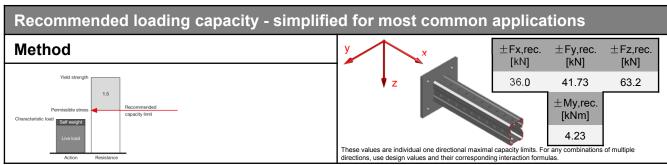
EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008
	1 11	

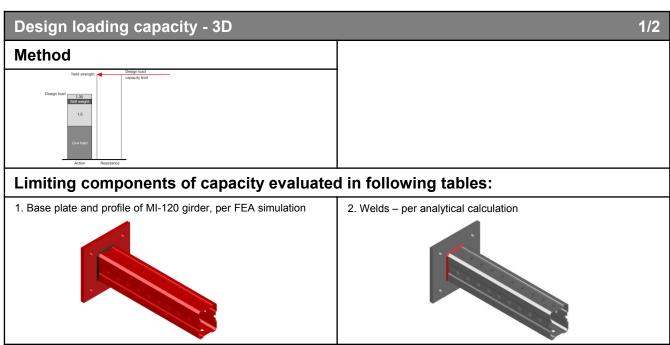

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

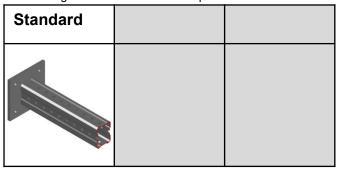

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Simplified drawing:

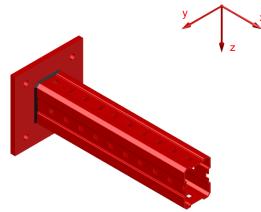


Loading case: Standard	Combinations covered by loading case
BOM: Brackets: MIC-C120-DH- 500	Pre-fab bracket for perpendicular connection to concrete.



Validity:

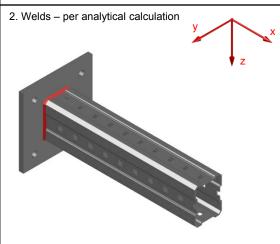
- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.


1. Base plate and profile of MI-120 girder, per FEA simulation

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
132.00	132.97	62.60	62.60	94.80	94.80
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
6.80	6.80	10.00	10.00	8.72	8.72

includes cross section resistance of steel base plate and channel Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

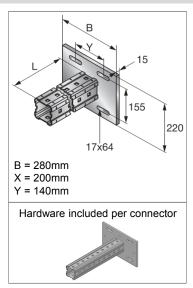
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
346.20	346.20	116.39	116.39	166.28	166.28
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
13.34	13.34	11.91	11.91	10.28	10.28

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Designation	Item number
MIC-S90-AH- 500	2203582
MIC-S90-AH- 750	2203583
MIC-S90-AH-1000	2203584
MIC-S90-AH-1500	2203585
MIC-S90-AH-2000	2203586

Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Bracket	ISO 1461	55

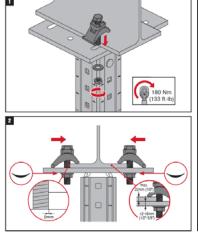

Weight:

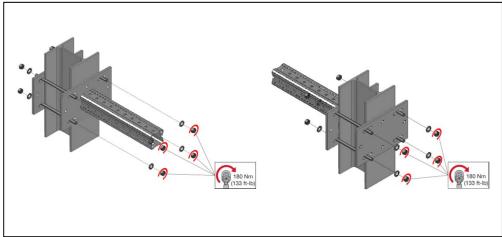
MIC-S90-AH- 500	11773g
MIC-S90-AH- 750	14160g
MIC-S90-AH-1000	16546g
MIC-S90-AH-1500	21320g
MIC-S90-AH-2000	26094g

Submittal text:

Hilti Hot-dipped galvanized bracket used as fixed to structural steel profiles. The fixation could be done by two different principles.

First principle is clamping, using four beam clams clamped on flange of the structural steel profile.


Designation	L[mm]
MIC-S90-AH- 500	500
MIC-S90-AH- 750	750
MIC-S90-AH-1000	1000
MIC-S90-AH-1500	1500
MIC-S90-AH-2000	2000


Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_{y} = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Girder DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Values for Modulus of Flasticity and Shear Modul	us are according to FN 1993-	1-1 and used for all Furocod	e calculations	

Instruction For Use:

No IFU attached to the packaging

For clamped loading case For boxed loading case (not attached to the packaging)

Possible loading cases				
Clamped	Boxed			

Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

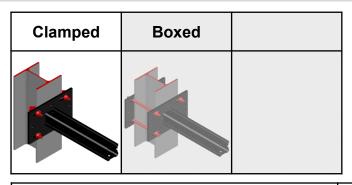
EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008
	1 11	

Software:

- **Ansys 18.2**
- Microsoft Excel
- Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

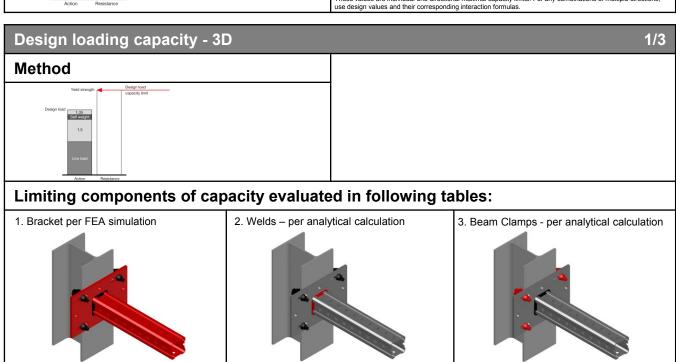

Simplified drawing:

		B
Designation	L[mm]	T X
MIC-S90-AH- 500	500	T V
MIC-S90-AH- 750	750	12
MIC-S90-AH-1000	1000	0
MIC-S90-AH-1500	1500	L
MIC-S90-AH-2000	2000	
B = 280mm X = 200mm Y = 140mm		155 220

Page 3/8

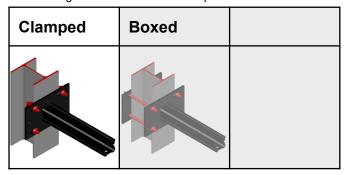
MIC-S90-AH-500-2000 Bracket - Steel

Loading case: Clamped BOM: Brackets: 1x MIC-S90-AH- 500 2203582 MIC-S90-AH- 750 2203583 MIC-S90-AH-1000 2203584 MIC-S90-AH-1500 2203585 MIC-S90-AH-2000 2203586 Beam clamps 4x MI-SGC M16 387398


Combinations covered by loading case

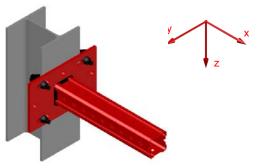
Pre-fab bracket for perpendicular connection to structural steel profiles flanges.

Flange width 75-165mm.


Recommended loading capacity - simplified for most common applications Method \pm Fx,rec. \pm Fy,rec. \pm Fz,rec. [kN] [kN] 63.93 6.87 6.87 \pm My,rec. [kNm] 4.05 These values are individual one directional maximal capacity limits. For any combinations of multiple directions

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

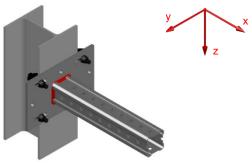

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation

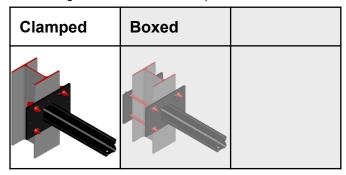


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
95.90	101.54	57.20	57.20	57.20	57.20
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.50	4.50	6.08	6.08	6.08	6.08

includes cross section resistance of steel base plate and channel

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Welds - per analytical calculation



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
285.11	285.11	116.39	116.39	116.39	116.39
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.54	9.54	6.84	6.84	6.84	6.84

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

Design loading capacity - 3D

3/3

Summary of design loads*

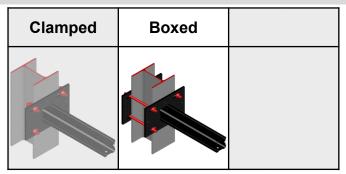
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

3. Beam Clamps - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.84	0.84	7.37	7.37	4.25	

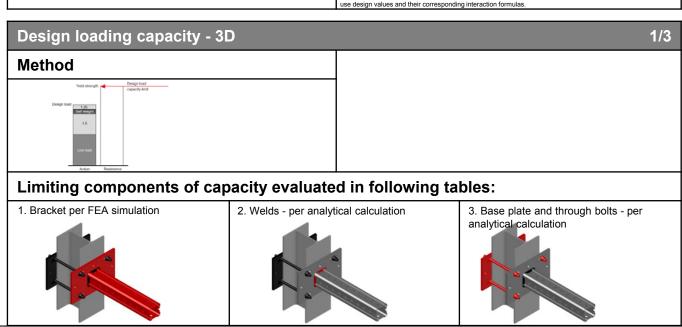
Interaction:

Normal force interaction:

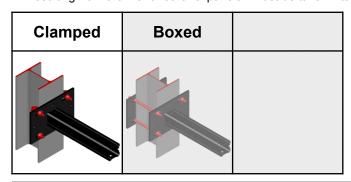

$$\frac{F_{xEd}}{F_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1}$$

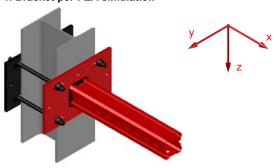

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Loading case: Boxed	Combinations covered by loading case
BOM: Brackets: 1x MIC-S90-AH- 500	Pre-fab bracket for perpendicular connection to structural steel Profiles boxing it with two base plates. Flange width 75-165mm.


Recommended loading capacity - simplified for most common applications Method \pm Fy,rec. \pm Fz,rec. [kN] [kN] [kN] 67.07 13.77 13.77 ±My,rec. [kNm] 4.05 These values are individual one directional maximal capacity limits. For any combinations of multiple directions, se design values and their corresponding interaction formulas

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation

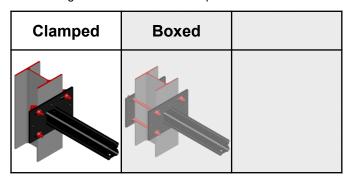
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
100.60	101.54	57.20	57.20	57.20	57.20
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.50	4.50	6.08	6.08	6.08	6.08

includes cross section resistance of steel base plate and channel

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le$$

2. Welds - per analytical calculation

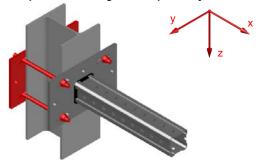
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
285.11	285.11	116.39	116.39	116.39	116.39
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.54	9.54	6.84	6.84	6.84	6.84


Interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{yRd}} + \frac{F_{zEd}}{F_{zRd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \leq 1$$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

3/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

3. Base plate and through bolts - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
164.00	Not decisive	20.66	20.66	20.66	20.66
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.67	1.67	11.64	11.64	6.81	6.81

Interaction:

Normal force interaction:

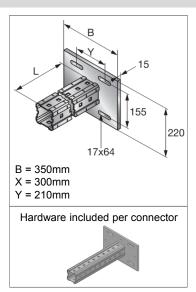
$$\frac{F_{xEd}}{F_{xRd}^{'}} + \frac{M_{yEd}}{M_{yRd}^{'}} + \frac{M_{zEd}}{M_{zRd}^{'}} \le 1$$

Shear force interaction:

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd}\times\left(1-\frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2+\left(\frac{F_{z,Ed}}{F_{z,Rd}\times\left(1-\frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2+\frac{M_{x,Ed}}{M_{x,Rd}\times\left(1-\frac{F_{x,Ed}}{F_{x,Rd}}\right)}\leq 1}$$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Designation	Item number
MIC-S90-BH- 500	2203587
MIC-S90-BH- 750	2203588
MIC-S90-BH-1000	2203589
MIC-S90-BH-1500	2203590
MIC-S90-BH-2000	2203591

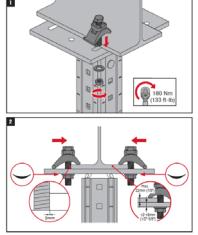

Corrosion protection:						
Material	HDG per	Zinc thickness, min. (µm)				
Bracket	ISO 1461	55				
Weight:						

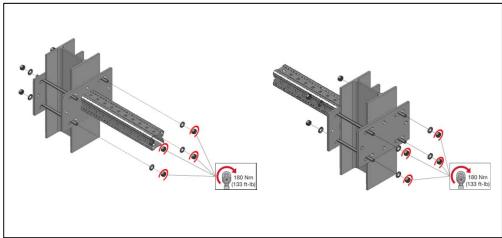
MIC-S90-BH- 500	13666g
MIC-S90-BH- 750	16052g
MIC-S90-BH-1000	18439g
MIC-S90-BH-1500	23213g
MIC-S90-BH-2000	27986g

Submittal text:

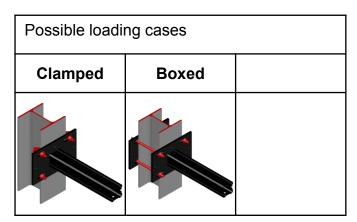
Hilti Hot-dipped galvanized bracket used as fixed to structural steel profiles. The fixation could be done by two different principles.

First principle is clamping, using four beam clams clamped on flange of the structural steel profile.


Designation	L[mm]
MIC-S90-BH- 500	500
MIC-S90-BH- 750	750
MIC-S90-BH-1000	1000
MIC-S90-BH-1500	1500
MIC-S90-BH-2000	2000


Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Girder DD11 MOD (EN 10111) Values for Medulus of Electicity and Sheer Medulus	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Instruction For Use:


No IFU attached to the packaging

For clamped loading case For boxed loading case (not attached to the packaging)

Design criteria used for loading capacity

Methodology:

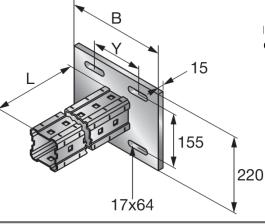
- Finite element analysis
- Analytic calculation

Standards and codes:

EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

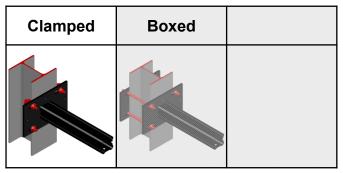
Software:

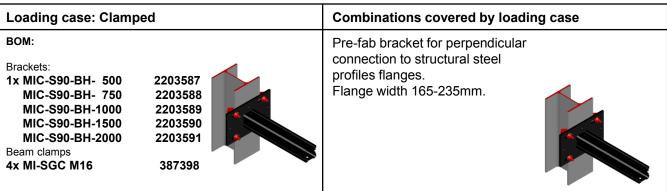
- Ansys 18.2
- Microsoft Excel
- Mathcad 15

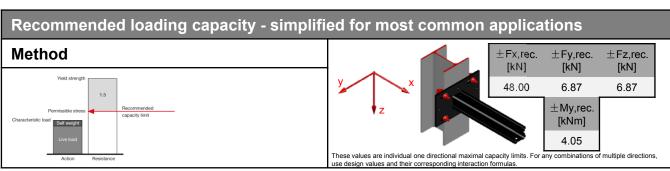

Validity:

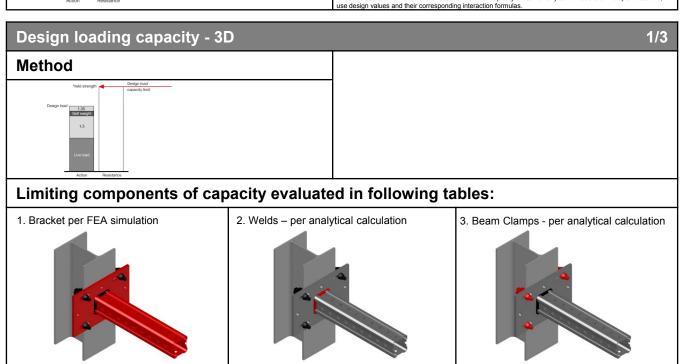
Temperature limits: -30° Published allowable loa including those resulting

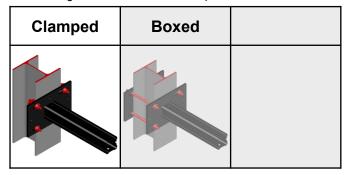
Simplified drawing:


B = 350mm X = 300mm Y = 210mm


Designation	L[mm]
MIC-S90-BH- 500	500
MIC-S90-BH- 750	750
MIC-S90-BH-1000	1000
MIC-S90-BH-1500	1500
MIC-S90-BH-2000	2000

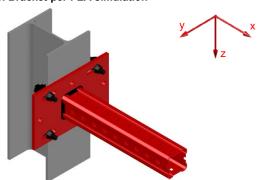



conditions. Non-static forces, en into account during design.



Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

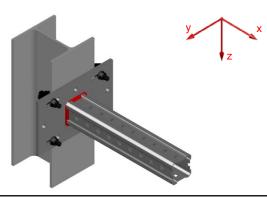

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation

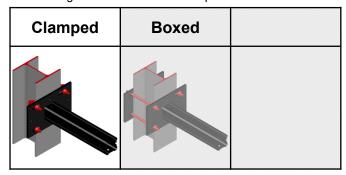


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
72.00	101.54	57.20	57.20	57.20	57.20
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.50	4.50	6.08	6.08	6.08	6.08

includes cross section resistance of steel base plate and channel

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

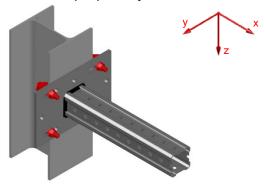
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
285.11	285.11	116.39	116.39	116.39	116.39
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.54	9.54	6.84	6.84	6.84	6.84


Interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

3/3

Summary of design loads*

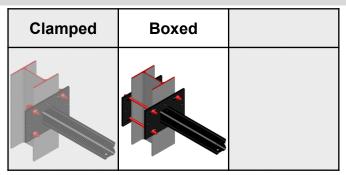
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

3. Beam Clamps - per analytical calculation

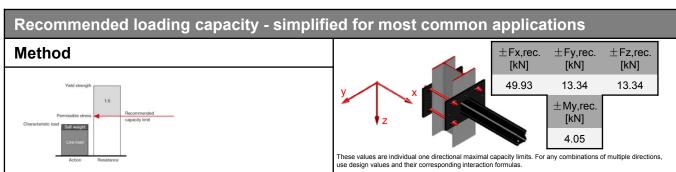
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.12	1.12	7.37	7.37	6.81	6.81

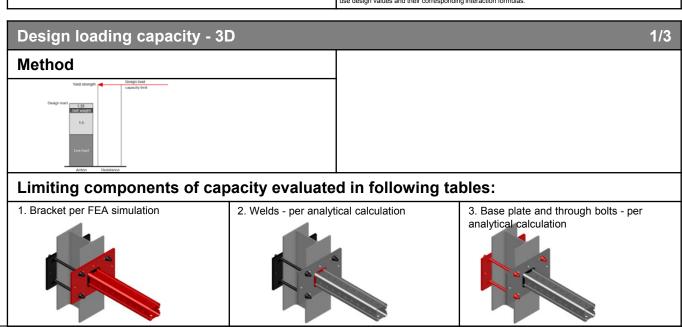
includes cross section resistance of steel base plate and channel Interaction:

Normal force interaction:

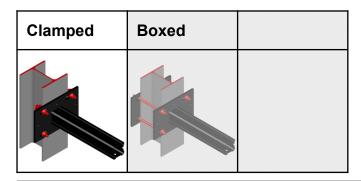

$$\frac{F_{xEd}}{F_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:


$$\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{*}}\right)^{2} + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{*}}\right)^{2}} + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{*}}\right)} \le 1\right)$$

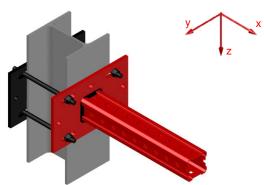

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Loading case: Boxed		Combinations covered by loading case
BOM: Brackets: 1x MIC-S90-BH- 500 MIC-S90-BH- 750 MIC-S90-BH-1500 MIC-S90-BH-2000 Base plate 1x MIB-SBH Threaded rods cut to particul 4x AM16x1000 8.8 HDGm Lock washer 8x LW M16 HDG plus washer Nut 8x M16-F nut	419104	Pre-fab bracket for perpendicular connection to structural steel Profiles boxing it with two base plates. Flange width 165-235mm.



Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

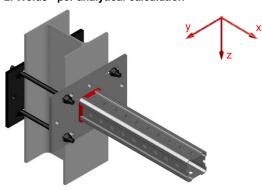

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation



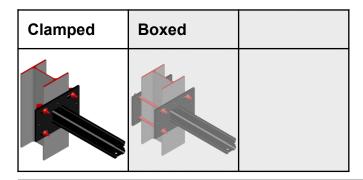
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
74.90	101.54	57.20	57.20	57.20	57.20
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
4.50	4.50	6.08	6.08	6.08	6.08

includes cross section resistance of steel base plate and channel

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Welds - per analytical calculation

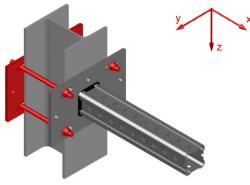
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
285.11	285.11	116.39	116.39	116.39	116.39
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.54	9.54	6.84	6.84	6.84	6.84


Interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

3/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

3. Base plate and through bolts - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
158.80	Not decisive	20.01	20.01	20.01	20.01
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.06	2.06	11.27	11.27	10.56	10.56

includes cross section resistance of steel base plate and channel Interaction:

Normal force interaction:

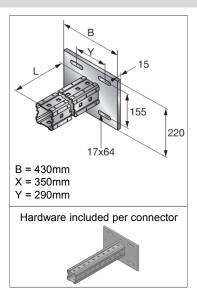
$$\frac{F_{xEd}}{F_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2} + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1$$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Designation	Item number
MIC-S90-CH- 500	2203592
MIC-S90-CH- 750	2203593
MIC-S90-CH-1000	2203594
MIC-S90-CH-1500	2203595
MIC-S90-CH-2000	2203596

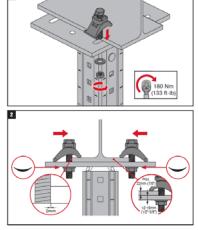

Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Bracket	ISO 1461	55
Weight:	45000	

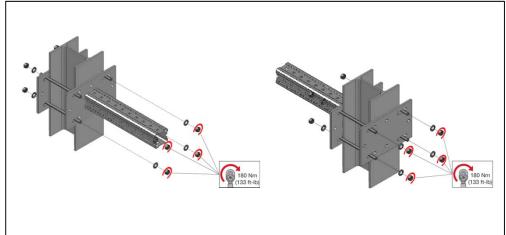
MIC-S90-CH- 500 15808g 18195g MIC-S90-CH- 750 MIC-S90-CH-1000 20582g MIC-S90-CH-1500 25355g MIC-S90-CH-2000 30129g

Submittal text:

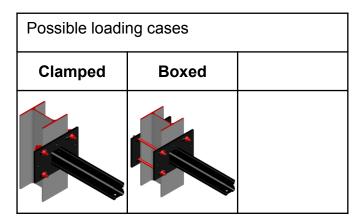
Hilti Hot-dipped galvanized bracket used as fixed to structural steel profiles. The fixation could be done by two different principles.

First principle is clamping, using four beam clams clamped on flange of the structural steel profile.




Designation	L[mm]
MIC-S90-CH- 500	500
MIC-S90-CH- 750	750
MIC-S90-CH-1000	1000
MIC-S90-CH-1500	1500
MIC-S90-CH-2000	2000

Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_{y} = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Girder DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Values for Modulus of Flasticity and Shear Modul	us are according to FN 1993-	1-1 and used for all Furocod	e calculations	


Instruction For Use:

No IFU attached to the packaging For clamped loading case For boxed loading case (not attached to the packaging)

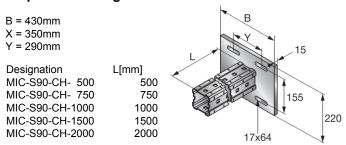
Design criteria used for loading capacity

Methodology:

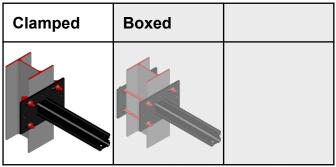
- Finite element analysis
- Analytic calculation

Standards and codes:

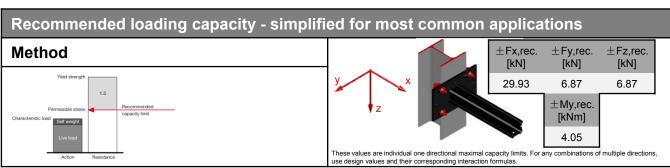
EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008
	1 11	

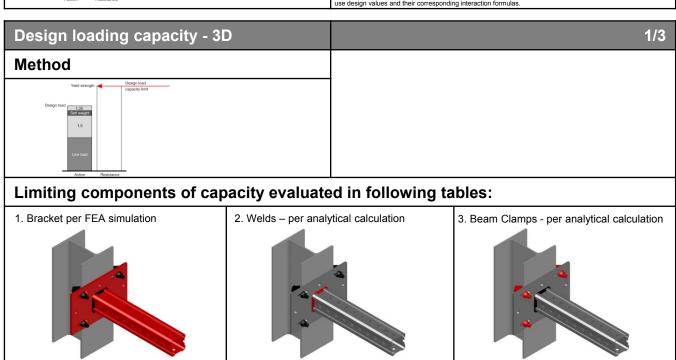

Software:

- Ansys 18.2
- Microsoft Excel
- · Mathcad 15

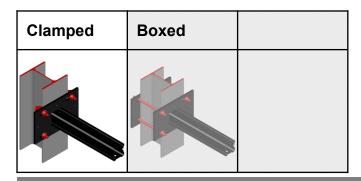

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Simplified drawing:

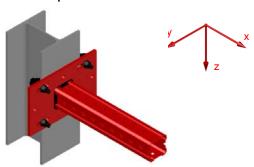


Loading case: Clamped Combinations covered by loading case BOM: Pre-fab bracket for perpendicular connection to structural steel Brackets: profiles flanges. 1x MIC-S90-CH- 500 2203592 Flange width 235-300mm. 2203593 MIC-S90-CH- 750 MIC-S90-CH-1000 2203594 MIC-S90-CH-1500 2203595 MIC-S90-CH-2000 2203596 Beam clamps 4x MI-SGC M16 387398



Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation

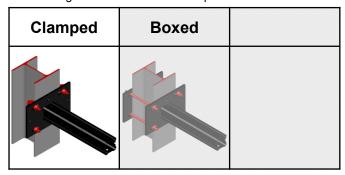
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
44.90	101.54	57.20	57.20	57.20	57.20
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.50	4.50	6.08	6.08	6.08	6.08

includes cross section resistance of steel base plate and channel

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{yRd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Welds - per analytical calculation

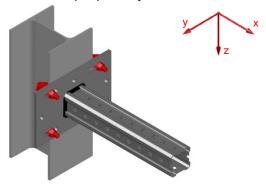
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
285.11	285.11	116.39	116.39	116.39	116.39
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.54	9.54	6.84	6.84	6.84	6.84


Interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

3/3

Summary of design loads*

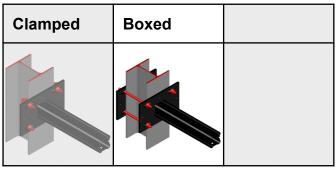
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

3. Beam Clamps - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.41	1.41	7.37	7.37	8.45	8.45

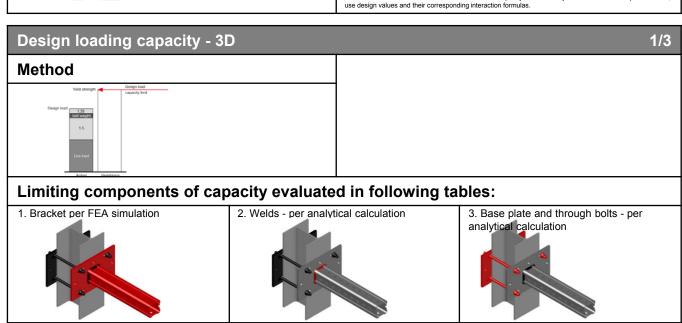
includes cross section resistance of steel base plate and channel Interaction:

Normal force interaction:

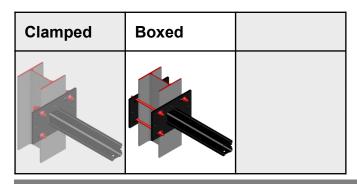

$$\frac{F_{xEd}}{F_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)}\right)^2} + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}}\right)} \le 1$$

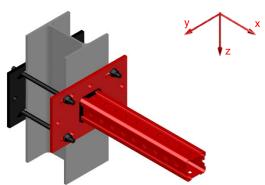

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Combinations covered by loading case Loading case: Boxed BOM: Pre-fab bracket for perpendicular Brackets: connection to structural steel 1x MIC-S90-CH- 500 2203592 Profiles boxing it with two base plates. MIC-S90-CH- 750 2203593 Flange width 235-300mm. MIC-S90-CH-1000 2203594 MIC-S90-CH-1500 2203595 MIC-S90-CH-2000 2203596 Base plate 1x MIB-SBH 2174675 Threaded rods cut to particular length 4x AM16x1000 8.8 HDG...m 419104 Lock washer 8x LW M16 HDG plus washer 2185343 Nut 8x M16-F nut 304767


Recommended loading capacity - simplified for most common applications Method \pm Fx,rec. \pm Fy,rec. \pm Fz,rec. [kN] [kN] [kN] 31.27 12.67 12.67 \pm My,rec. [kNm] 4.05 These values are individual one directional maximal capacity limits. For any combinations of multiple directions,

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

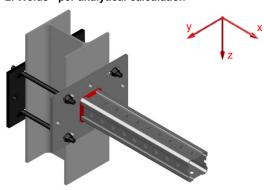

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation



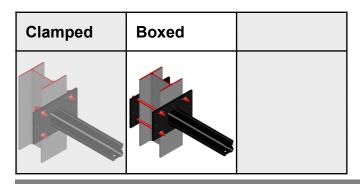
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
46.90	91.00	57.20	57.20	57.20	57.20
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.50	4.50	6.08	6.08	6.08	6.08

includes cross section resistance of steel base plate and channel Interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Welds - per analytical calculation

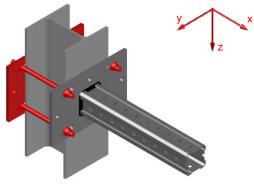
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
285.11	285.11	116.39	116.39	116.39	116.39
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.54	9.54	6.84	6.84	6.84	6.84


Interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

3/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

3. Base plate and through bolts - per analytical calculation

+Fx,Rd	-Fx,Rd +Fy,Rd		-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN] [kN]		[kN]	[kN]	[kN]
150.80	Not decisive	19.00	19.00	19.00	19.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.57	2.57	10.71	10.71	12.44	

includes cross section resistance of steel base plate and channel Interaction:

Normal force interaction:

$$\frac{F_{xEd}}{F_{xRd}^{'}} + \frac{M_{yEd}}{M_{yRd}^{'}} + \frac{M_{zEd}}{M_{zRd}^{'}} \le 1$$

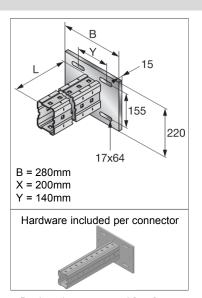
Shear force interaction:

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x'Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x'Rd}}\right)}\right)^2} + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x'Rd}}\right)} \le 1$$

Important note: The resistance of steel girder on which connector MIC-SA-MAH is mounted must be checked appropriately by the client. For determination of connector resistances the steel girder is considered to be rigid.

Designation	Item number
MIC-S120-AH- 500	2203597
MIC-S120-AH- 750	2203598
MIC-S120-AH-1000	2203599
MIC-S120-AH-1500	2203600
MIC-S120-AH-2000	2203601

Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Bracket	ISO 1461	55

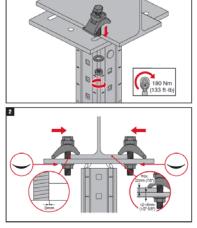

Weight:

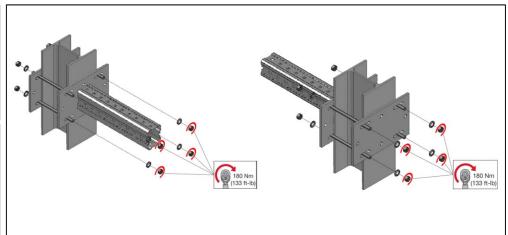
MIC-S120-AH- 500	13374g
MIC-S120-AH- 750	16562g
MIC-S120-AH-1000	19750g
MIC-S120-AH-1500	26125g
MIC-S120-AH-2000	32500g

Submittal text:

Hilti Hot-dipped galvanized bracket used as fixed to structural steel profiles. The fixation could be done by two different principles.

First principle is clamping, using four beam clams clamped on flange of the structural steel profile.


Designation	L[mm]
MIC-S120-AH- 500	500
MIC-S120-AH- 750	750
MIC-S120-AH-1000	1000
MIC-S120-AH-1500	1500
MIC-S120-AH-2000	2000


Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	E = 210000 $\frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Girder DD11 MOD (EN 10111) Values for Modulus of Flasticity and Shear Modul	$f_{y} = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$

Instruction For Use:

No IFU attached to the packaging

For clamped loading case For boxed loading case (not attached to the packaging)

Possible loading cases		
Clamped	Boxed	

Design criteria used for loading capacity

Methodology:

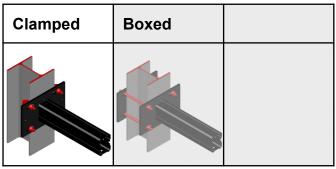
- Finite element analysis
- Analytic calculation

Standards and codes:

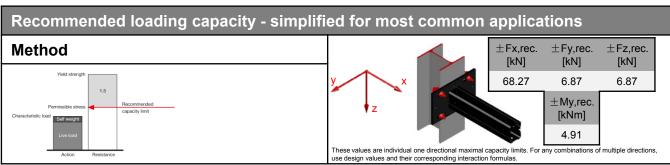
otaniaanao ana oo	4001	
EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

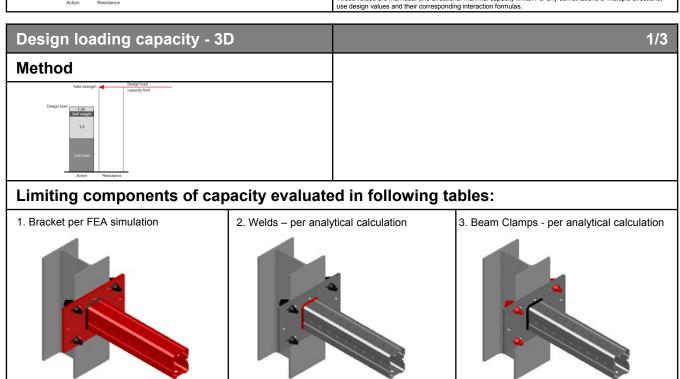
Software:

- Ansys 18.2
- Microsoft Excel
- Mathcad 15

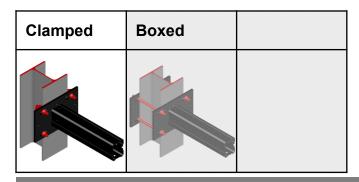

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Simplified drawing:

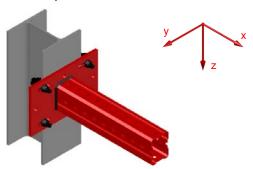

-	_	
Designation	L[mm]	В
MIC-S120-AH- 500	500	~ V
MIC-S120-AH- 750	750	. 15
MIC-S120-AH-1000	1000	
MIC-S120-AH-1500	1500	
MIC-S120-AH-2000	2000	
		155
B = 280mm		
		220
X = 200mm		
Y = 140mm		
1 - 14011111		17x64

Loading case: Clamped Combinations covered by loading case BOM: Pre-fab bracket for perpendicular Brackets: connection to structural steel 1x MIC-S120-AH- 500 2203597 profiles flanges. MIC-S120-AH- 750 2203598 Flange width 75-165mm. MIC-S120-AH-1000 2203599 MIC-S120-AH-1500 2203600 MIC-S120-AH-2000 2203601 Beam clamps 4x MI-SGC M16 387398



Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

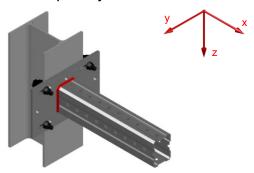

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation

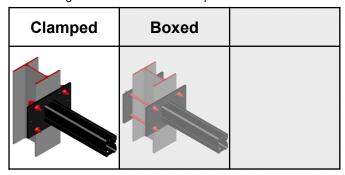


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
105.20	132.97	62.60	62.60	94.80	94.80
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
6.80	6.80	10.17	10.17	8.03	8.03

includes cross section resistance of steel base plate and channel

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{yRd}} + \frac{F_{zEd}}{F_{zRd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \leq 1$$

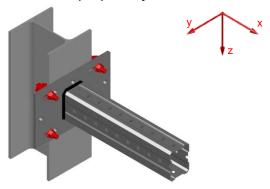
2. Welds - per analytical calculation


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
346.20	346.20	116.39	116.39	166.28	166.28
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
13.34	13.34	11.91	11.91	10.28	10.28

$$\frac{F_{\mathbf{x}}\underline{E}\mathbf{d}}{F_{\mathbf{x}}\underline{R}\mathbf{d}} + \frac{F_{\mathbf{y}}\underline{E}\mathbf{d}}{F_{\mathbf{y}}\underline{R}\mathbf{d}} + \frac{F_{\mathbf{z}}\underline{E}\mathbf{d}}{F_{\mathbf{z}}\underline{R}\mathbf{d}} + \frac{M_{\mathbf{x}}\underline{E}\mathbf{d}}{M_{\mathbf{x}}\underline{R}\mathbf{d}} + \frac{M_{\mathbf{y}}\underline{E}\mathbf{d}}{M_{\mathbf{y}}\underline{R}\mathbf{d}} + \frac{M_{\mathbf{z}}\underline{E}\mathbf{d}}{M_{\mathbf{z}}\underline{R}\mathbf{d}} \leq 1$$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

3/3

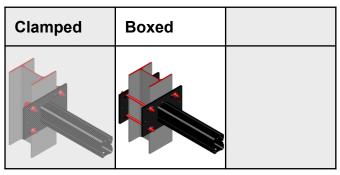
Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

3. Beam Clamps - per analytical calculation

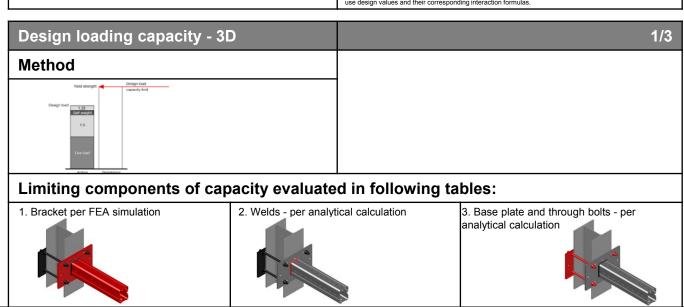
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.84	0.84	7.37	7.37	4.25	4.25

includes cross section resistance of steel base plate and channel Interaction:

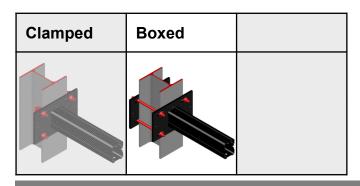

Normal force interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:

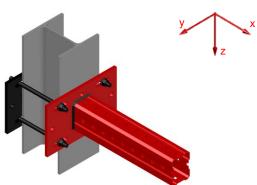

$$\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{*}}\right)^{2} + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{*}}\right)^{2}} + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{*}}\right)} \le 1\right)$$

Loading case: Boxed Combinations covered by loading case BOM: Pre-fab bracket for perpendicular Brackets: connection to structural steel 1x MIC-S120-AH- 500 2203597 Profiles boxing it with two base plates. MIC-S120-AH- 750 2203598 Flange width 75-165mm. MIC-S120-AH-1000 2203599 MIC-S120-AH-1500 2203600 MIC-S120-AH-2000 2203601 Hardware not included in packaging: Base plate 1x MIB-SAH Threaded rods cut to particular length 4x AM16x1000 8.8 HDG...m 419104 Lock washer 8x LW M16 HDG plus washer 2185343 Nut 8x M16-F nut 304767


Recommended loading capacity - simplified for most common applications Method \pm Fx,rec. \pm Fy,rec. \pm Fz,rec. [kN] [kN] [kN] 78.13 13.77 13.77 \pm My,rec. [kNm] 7.00 These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

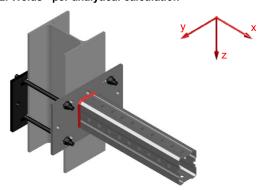

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation

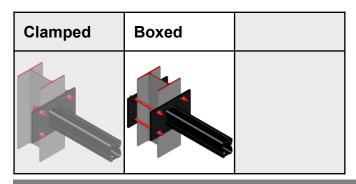


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
117.20	132.97	62.60	62.60	94.80	94.80
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
6.80	6.80	10.51	10.51	8.03	8.03

includes cross section resistance of steel base plate and channel

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{yRd}} + \frac{F_{zEd}}{F_{zRd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \leq 1$$

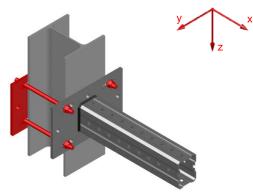
2. Welds - per analytical calculation


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
346.20	346.20	116.39	116.39	166.28	166.28
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
13.34	13.34	11.91	11.91	10.28	10.28

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

3/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

3. Base plate and through bolts - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
164.00	Not decisive	20.66	20.66	20.66	20.66
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.67	1.67	11.64	11.64	6.81	6.81

includes cross section resistance of steel base plate and channel Interaction:

Normal force interaction:

$$\frac{F_{xEd}}{F_{xRd}^{'}} + \frac{M_{yEd}}{M_{yRd}^{'}} + \frac{M_{zEd}}{M_{zRd}^{'}} \le 1$$

Shear force interaction:

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x'Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x'Rd}}\right)}\right)^2} + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x'Rd}}\right)} \le 1$$

Designation	Item number
MIC-S120-BH- 500	2203602
MIC-S120-BH- 750	2203603
MIC-S120-BH-1000	2203604
MIC-S120-BH-1500	2203605
MIC-S120-BH-2000	2203606

Corrosion protection:							
Material	HDG per	Zinc thickness, min. (µm)					
Bracket	ISO 1461	55					

Weight:

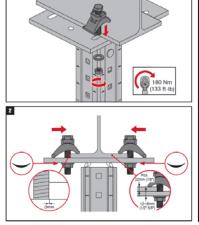
MIC-S120-BH- 500	15267g
MIC-S120-BH- 750	18455g
MIC-S120-BH-1000	21642g
MIC-S120-BH-1500	28018g
MIC-S120-BH-2000	34393g

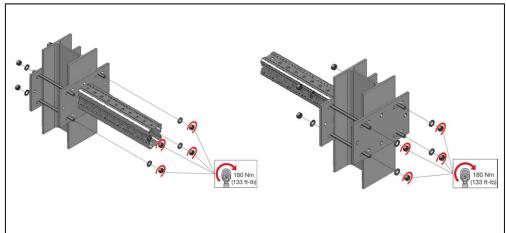
Submittal text:

Hilti Hot-dipped galvanized bracket used as fixed to structural steel profiles. The fixation could be done by two different principles.

First principle is clamping, using four beam clams clamped on flange of the structural steel profile.

155 220
17x64 B = 350mm X = 300mm Y = 210mm
Hardware included per connector


Designation	L[mm]
MIC-S120-BH- 500	500
MIC-S120-BH- 750	750
MIC-S120-BH-1000	1000
MIC-S120-BH-1500	1500
MIC-S120-BH-2000	2000


Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{\scriptscriptstyle N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$
Girder DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Flasticity and Shear Modul	us are according to FN 1993.	.1_1 and used for all Furncod	e calculations	

Instruction For Use:

No IFU attached to the packaging

For clamped loading case For boxed loading case (not attached to the packaging)

Possible loading cases			
Clamped	Boxed		

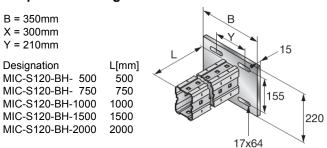
Design criteria used for loading capacity

Methodology:

- · Finite element analysis
- Analytic calculation

Standards and codes:

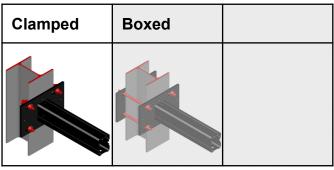
EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

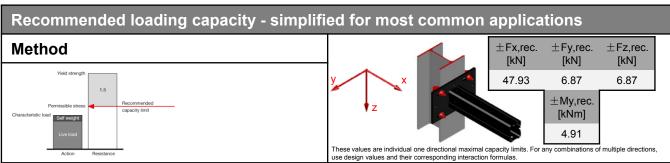

Software:

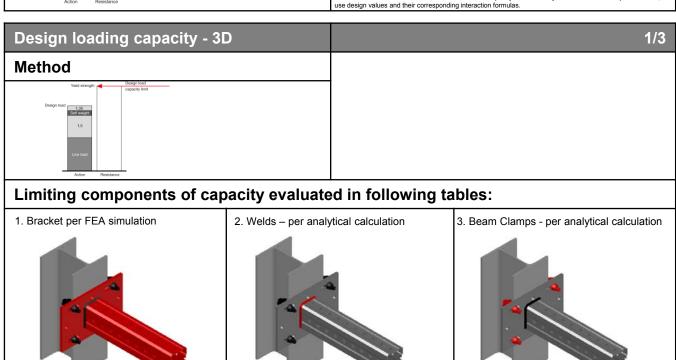
- Ansys 18.2
- · Microsoft Excel
- · Mathcad 15

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

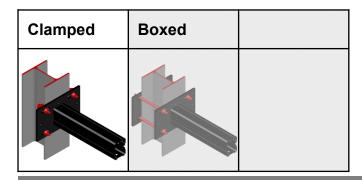

Simplified drawing:


Page 3/8



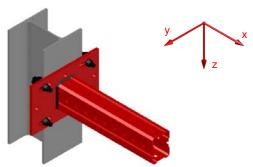
MIC-S120-BH-500-2000 Bracket - Steel

Loading case: Clamped Combinations covered by loading case BOM: Pre-fab bracket for perpendicular Brackets: connection to structural steel 1x MIC-S120-BH- 500 2203602 profiles flanges. MIC-S120-BH- 750 2203603 Flange width 165-235mm. MIC-S120-BH-1000 2203604 MIC-S120-BH-1500 2203605 MIC-S120-BH-2000 2203606 Beam clamps 4x MI-SGC M16 387398



Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

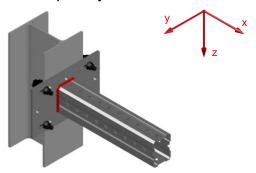

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation

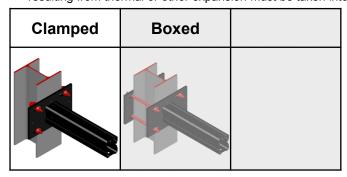


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
71.90	132.97	62.60	62.60	94.80	94.80
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
6.80	6.80	8.80	8.80	8.03	8.03

includes cross section resistance of steel base plate and channel Interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{vRd}} + \frac{F_{zEd}}{F_{zRd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{yEd}}{M_{vRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

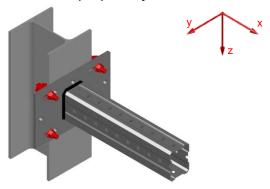
2. Welds - per analytical calculation


+Fx,F [kN		-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
346.2	20	346.20	116.39	116.39	166.28	166.28
+Mx,l [kNn		-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
13.3	4	13.34	11.91	11.91	10.28	10.28

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

3/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

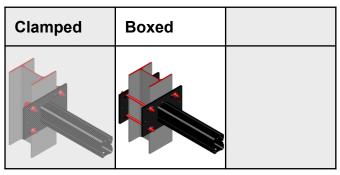
3. Beam Clamps - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.12	1.12	7.37	7.37	6.81	6.81

includes cross section resistance of steel base plate and channel Interaction:

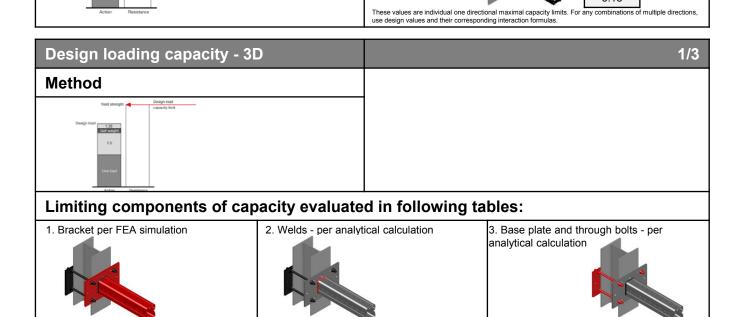
Normal force interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$


Shear force interaction:

$$\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{*}}\right)^{2} + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{*}}\right)^{2}} + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{*}}\right)} \le 1\right)$$

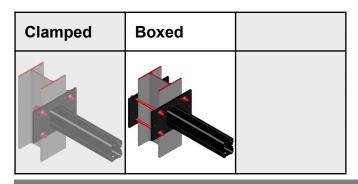
Page 6/8



MIC-S120-BH-500-2000 Bracket - Steel

Loading case: Boxed Combinations covered by loading case BOM: Pre-fab bracket for perpendicular Brackets: connection to structural steel 1x MIC-S120-BH- 500 2203602 Profiles boxing it with two base plates. MIC-S120-BH- 750 2203603 Flange width 165-235mm. MIC-S120-BH-1000 2203604 MIC-S120-BH-1500 2203605 MIC-S120-BH-2000 2203606 Hardware not included in packaging: Base plate 1x MIB-SAH Threaded rods cut to particular length 4x AM16x1000 8.8 HDG...m 419104 Lock washer 8x LW M16 HDG plus washer 2185343 Nut 8x M16-F nut 304767

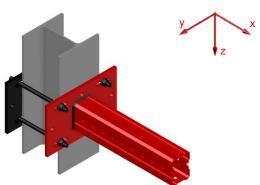
Recommended loading capacity - simplified for most common applications Method \pm Fx,rec. \pm Fy,rec. \pm Fz,rec. [kN] [kN] [kN] 51.40 13.34 13.34 \pm My,rec. [kNm]



6.18

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

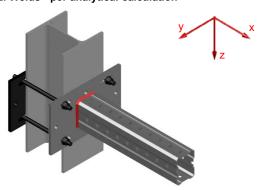

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation

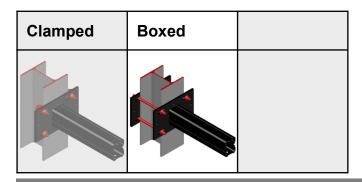


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
77.10	132.97	62.60	62.60	94.80	94.80
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
6.80	6.80	9.27	9.27	8.03	8.03

includes cross section resistance of steel base plate and channel

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

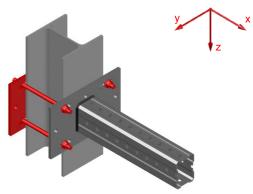
2. Welds - per analytical calculation


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
346.20	346.20	116.39	116.39	166.28	166.28
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
13.34	13.34	11.91	11.91	10.28	10.28

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

3/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

3. Base plate and through bolts - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
158.80	Not decisive	20.01	20.01	20.01	20.01
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.06	2.06	11.27	11.27	10.56	10.56

includes cross section resistance of steel base plate and channel Interaction:

Normal force interaction:

$$\frac{F_{xEd}}{F_{xRd}^{'}} + \frac{M_{yEd}}{M_{yRd}^{'}} + \frac{M_{zEd}}{M_{zRd}^{'}} \leq 1$$

Shear force interaction:

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x'Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x'Rd}}\right)}\right)^2} + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x'Rd}}\right)} \le 1$$

Designation	Item number
MIC-S120-CH- 500	2203607
MIC-S120-CH- 750	2203608
MIC-S120-CH-1000	2203609
MIC-S120-CH-1500	2203570
MIC-S120-CH-2000	2203571

Corrosion protection:		
Material	HDG per	Zinc thickness, min. (µm)
Bracket	ISO 1461	55
\A/a:a.la4.		

Weight:

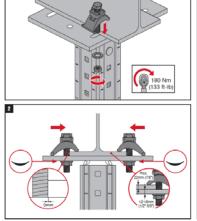
MIC-S120-CH- 500	17410g
MIC-S120-CH- 750	20597g
MIC-S120-CH-1000	23785g
MIC-S120-CH-1500	30160g
MIC-S120-CH-2000	36535a

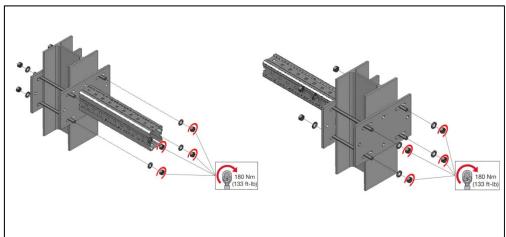
Submittal text:

Hilti Hot-dipped galvanized bracket used as fixed to structural steel profiles. The fixation could be done by two different principles.

First principle is clamping, using four beam clams clamped on flange of the structural steel profile.

B 155 155 220
17x64 B = 430mm X = 350mm Y = 290mm
Hardware included per connector


Designation	L[mm]
MIC-S120-CH- 500	500
MIC-S120-CH- 750	750
MIC-S120-CH-1000	1000
MIC-S120-CH-1500	1500
MIC-S120-CH-2000	2000


Material properties				
Material	Yield strength	Ultimate strength	Modulus of elasticity	Shear modulus
Plate S235JR - (DIN EN10025-2) or DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Girder DD11 MOD (EN 10111)	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Values for Modulus of Flasticity and Shear Modulus are according to FN 1993-1-1 and used for all Eurocode calculations				

Instruction For Use:

No IFU attached to the packaging

For clamped loading case For boxed loading case (not attached to the packaging)

Possible loading cases					
Clamped					

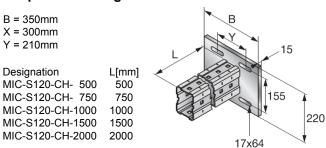
Design criteria used for loading capacity

Methodology:

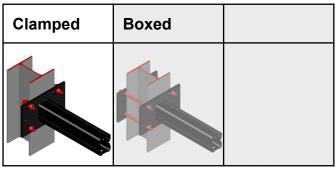
- Finite element analysis
- Analytic calculation

Standards and codes:

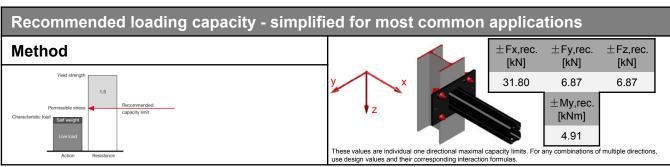
EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008

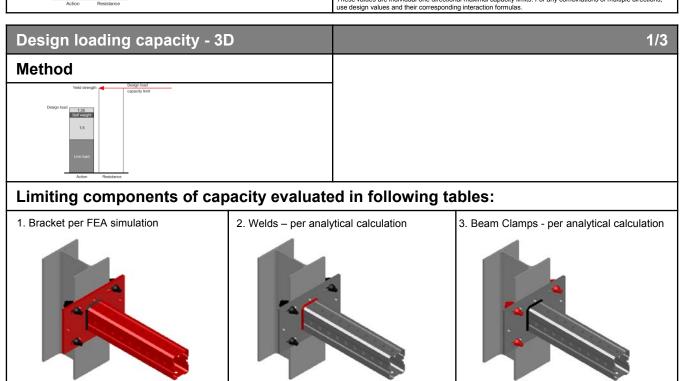

Software:

- Ansys 18.2
- Microsoft Excel
- Mathcad 15

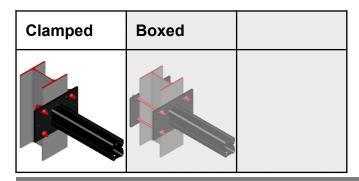

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Simplified drawing:

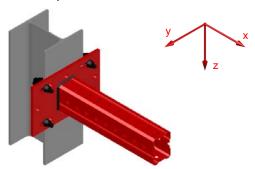


Loading case: Clamped Combinations covered by loading case BOM: Pre-fab bracket for perpendicular Brackets: connection to structural steel 1x MIC-S120-CH- 500 2203607 profiles flanges. MIC-S120-CH- 750 2203608 Flange width 235-300mm. MIC-S120-CH-1000 2203609 MIC-S120-CH-1500 2203570 MIC-S120-CH-2000 2203571 Beam clamps 4x MI-SGC M16 387398



Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

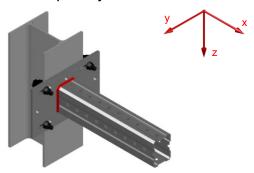

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation

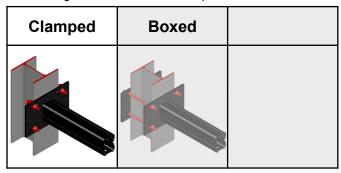


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
47.70	132.97	62.60	62.60	94.80	94.80
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
6.80	6.80	8.03	8.03	8.03	8.03

includes cross section resistance of steel base plate and channel

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{yEd}}{F_{yRd}} + \frac{F_{zEd}}{F_{zRd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \leq 1$$

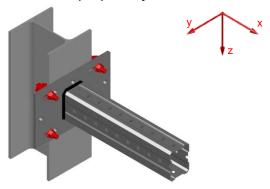
2. Welds - per analytical calculation


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
346.20	346.20	116.39	116.39	166.28	166.28
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
13.34	13.34	11.91	11.91	10.28	10.28

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

3/3

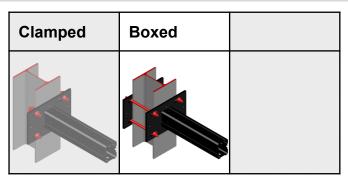
Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

3. Beam Clamps - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
102.40	Not decisive	10.31	10.31	10.31	10.31
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.41	1.41	7.37	7.37	8.45	8.45

includes cross section resistance of steel base plate and channel Interaction:

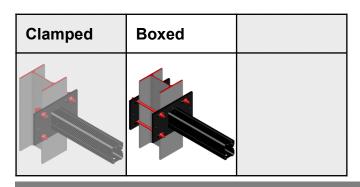

Normal force interaction:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{M_{yEd}}{M_{yRd}} + \frac{M_{zEd}}{M_{zRd}} \le 1$$

Shear force interaction:

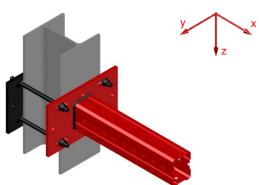
$$\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{*}}\right)^{2} + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{*}}\right)^{2}} + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x,Rd}^{*}}\right)} \le 1\right)$$

Loading case: Boxed Combinations covered by loading case BOM: Pre-fab bracket for perpendicular Brackets: connection to structural steel 1x MIC-S120-CH- 500 2203607 Profiles boxing it with two base plates. MIC-S120-CH- 750 2203608 Flange width 235-300mm. MIC-S120-CH-1000 2203609 MIC-S120-CH-1500 2203570 MIC-S120-CH-2000 2203571 Hardware not included in packaging: Base plate 1x MIB-SAH Threaded rods cut to particular length 4x AM16x1000 8.8 HDG...m 419104 Lock washer 8x LW M16 HDG plus washer 2185343 Nut 8x M16-F nut 304767


Recommended loading capacity - simplified for most common applications Method \pm Fx,rec. \pm Fy,rec. \pm Fz,rec. [kN] [kN] [kN] 32.73 12.67 12.67 \pm My,rec. [kNm] 5.48 These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

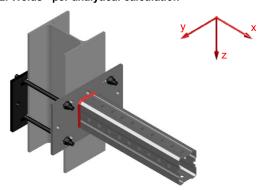

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

1. Bracket per FEA simulation

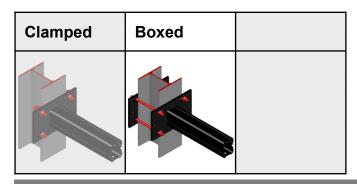


+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
49.10	97.70	62.60	62.60	94.80	94.80
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
6.80	6.80	8.22	8.22	8.03	8.03

includes cross section resistance of steel base plate and channel

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{v.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{v.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

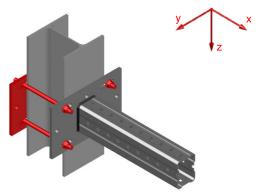
2. Welds - per analytical calculation


+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
346.20	346.20	116.39	116.39	166.28	166.28
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
13.34	13.34	11.91	11.91	10.28	10.28

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Validity:

- Temperature limits: -30°C (-22°F) to +93°C (200°F).
- Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.


Design loading capacity - 3D

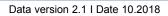
2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm.

3. Base plate and through bolts - per analytical calculation

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
150.80	Not decisive	19.00	19.00	19.00	19.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.57	2.57	10.71	10.71	12.44	


includes cross section resistance of steel base plate and channel Interaction:

Normal force interaction:

$$\frac{F_{xEd}}{F_{xRd}^{'}} + \frac{M_{yEd}}{M_{yRd}^{'}} + \frac{M_{zEd}}{M_{zRd}^{'}} \le 1$$

Shear force interaction:

$$\sqrt{\left(\frac{F_{y,Ed}}{F_{y,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x'Rd}}\right)}\right)^2 + \left(\frac{F_{z,Ed}}{F_{z,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x'Rd}}\right)}\right)^2} + \frac{M_{x,Ed}}{M_{x,Rd} \times \left(1 - \frac{F_{x,Ed}}{F_{x'Rd}}\right)} \le 1$$

